给定一个由n个圆盘组成的塔,这些圆盘按照大小递减的方式套在第一根桩柱上。现要将整个塔移动到另一根桩柱上,每次只能移动一个圆盘,且较大的圆盘在移动过程中不能放置在较小的圆盘上面。
输入格式:
输入由四行: 第一行是圆盘数量n(1<=n<=10); 第二行到第四行分别是三根桩柱的名字(字符串),n个盘子套在第一根桩柱上。
输出格式:
输出移动步骤,每行输出一步。
输入样例:
在这里给出一组输入。例如:
2
a
b
c
输出样例:
在这里给出相应的输出。例如:
a->b
a->c
b->c
代码如下:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
sc.nextLine();
String a = sc.nextLine();
String b = sc.nextLine();
String c = sc.nextLine();
recursion(n,a,b,c);
}
public static void recursion(int n, String a, String b, String c) {
if(n>0) {
recursion(n-1, a, c, b); //将a上的n-1个盘子移到b上
System.out.println(a+"->"+c);
recursion(n-1, b, a, c); //将b上的n-1个盘子移到c上
}
}
}
汉诺塔问题最主要的是理解里面存在的逻辑,类似于背包客问题和斐波那契数列,运用递归将问题简化,把n个的问题转换成1和n-1个,然后只要考虑清楚谁是中间暂存的临时柱子,谁是最终的目标柱子就没问题。