Thirteen_Bus_Load_Flow:基于MATLAB Simulink的IEEE 13节点潮流馈线仿真模型

Thirteen_Bus_Load_Flow:基于MATLAB Simulink的IEEE 13节点潮流馈线仿真模型。
十二个潮流总线用于计算IEEE 13节点馈线电路的不平衡潮流。
仿真条件:MATLAB Simulink R2015b


Thirteen_Bus_Load_Flow:基于MATLAB Simulink的IEEE 13节点潮流馈线仿真模型

随着电力系统的不断发展,对电力系统的可靠性和稳定性要求也越来越高。潮流计算作为电力系统分析的重要工具之一,在电力系统运行控制、安全分析等方面具有广泛的应用。

本文将介绍基于MATLAB Simulink的IEEE 13节点潮流馈线仿真模型。该模型通过十二个潮流总线对IEEE 13节点馈线电路的不平衡潮流进行了计算和分析。

首先,我们需要了解IEEE 13节点馈线电路的基本组成。IEEE 13节点馈线电路由一个变压器、三个电缆、三个开关、三个电抗器、十三个节点组成。其中,节点1-3为发电机侧节点,节点4-13为负荷侧节点。

为了实现对该电路的潮流计算,我们需要用到MATLAB Simulink R2015b。该软件提供的仿真功能可以帮助我们快速构建模型并分析结果。接下来,我们将详细介绍该模型的构建步骤。

  1. 模型建立

首先,我们需要在Simulink环境下打开新建一个模型文件,并添加基本的分析模块,如电源模块、发电机模块、负荷模块等。接着,我们需要设置各个节点的参数、电压值、电流值等。

  1. 潮流计算

在设置好节点参数与电压电流值后,我们需要建立潮流计算模块。潮流计算是电力系统分析的核心部分,它可以帮助我们分析电力系统的电压、电流、功率等基本参数。

在Simulink中,我们可以使用“潮流计算器”模块实现对电路的潮流计算。该模块提供了多种计算方法,比如高斯-赛德尔法、牛顿-拉夫逊法等。用户可以根据实际需要选择不同的计算方法。

  1. 结果分析

通过潮流计算器计算得到的结果可以帮助我们分析电路的各种参数,如电压、电流、功率等。在Simulink环境中,我们可以使用“示波器”模块对数据进行实时监测和分析。通过示波器可以帮助我们更好的了解电路的运行状态,及时发现和解决问题。

总体来说,基于MATLAB Simulink的IEEE 13节点潮流馈线仿真模型可以帮助我们实现对该电路的快速分析和优化。在实际应用中,可以根据实际需要进行修改和扩展,以满足不同的分析和控制要求。

相关代码,程序地址:http://lanzouw.top/659188224702.html
 

在解决AttributeError: module ‘onnx’ has no attribute ‘load’问题时,可以尝试以下方法来解决: 1. 确保你已经正确安装了ONNX库。可以通过在命令行中使用pip install onnx来安装最新版本的ONNX库。 2. 确保你的代码中使用的是正确的函数名称。在引用中提到的错误通常表示你正在尝试使用一个不存在的函数。在这种情况下,应该是onnx.load_from_string而不是onnx.load。 3. 检查你的代码中是否存在拼写错误或语法错误。确保你正确导入了ONNX库并正确使用其函数。 4. 如果你已经安装了ONNX库并且代码中没有拼写错误或语法错误,但仍然出现错误,请尝试更新你的ONNX库到最新版本。可以使用pip install --upgrade onnx来更新。 对于解决AttributeError: module 'tensorflow.compat.v1' has no attribute 'contrib'的问题,可以尝试以下方法: 1. 确保你正在使用的是与你的TensorFlow版本相兼容的代码。在某些版本的TensorFlow中,contrib模块已被移除。如果你的代码中使用了contrib模块,可以尝试删除或替换这些代码。 2. 检查你的代码中是否存在拼写错误或语法错误。确保你正确导入了TensorFlow库并正确使用其模块和函数。 3. 如果你已经安装了最新版本的TensorFlow但仍然出现错误,请尝试降级到与你的代码兼容的TensorFlow版本。你可以使用pip install tensorflow==x.x.x来安装特定版本的TensorFlow,其中x.x.******net18, (1, 3, 224, 224)) ,AttributeError: module 'onnx' has no attribute 'load_from_string'错误的解决方法如下: 1. 确保你已经正确安装了ONNX库。可以通过在命令行中使用pip install onnx来安装最新版本的ONNX库。 2. 确保你的代码中使用的是正确的函数名称。在引用中提到的错误通常表示你正在尝试使用一个不存在的函数。在这种情况下,应该是onnx.load_from_string而不是onnx.load。 3. 检查你的代码中是否存在拼写错误或语法错误。确保你正确导入了ONNX库并正确使用其函数。 4. 如果你已经安装了ONNX库并且代码中没有拼写错误或语法错误,但仍然出现错误,请尝试更新你的ONNX库到最新版本。可以使用pip install --upgrade onnx来更新。 综上所述,通过检查代码中的拼写错误、正确安装和导入所需的库以及确保使用正确的函数名称,你应该能够解决AttributeError: module 'onnx' has no attribute 'load_from_string'的问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [错误AttributeError: module ‘onnx‘ has no attribute ‘load‘的解决方式](https://blog.csdn.net/CN_Thirteen/article/details/130973404)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [AttributeError: module 'tensorflow.compat.v1' has no attribute '](https://download.csdn.net/download/qq_38766019/86272235)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [AttributeError: module ‘torch.onnx‘ has no attribute ‘set_training](https://blog.csdn.net/qq_23869697/article/details/118145310)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值