L2-014. 列车调度
火车站的列车调度铁轨的结构如下图所示。

Figure
两端分别是一条入口(Entrance)轨道和一条出口(Exit)轨道,它们之间有N条平行的轨道。每趟列车从入口可以选择任意一条轨道进入,最后从出口离开。在图中有9趟列车,在入口处按照{8,4,2,5,3,9,1,6,7}的顺序排队等待进入。如果要求它们必须按序号递减的顺序从出口离开,则至少需要多少条平行铁轨用于调度?
输入格式:
输入第一行给出一个整数N (2 <= N <= 105),下一行给出从1到N的整数序号的一个重排列。数字间以空格分隔。
输出格式:
在一行中输出可以将输入的列车按序号递减的顺序调离所需要的最少的铁轨条数。
输入样例:9
8 4 2 5 3 9 1 6 7
输出样例:
4
思路:将列车按照顺序开出,第一辆开出的为8,要在轨道上等待,接着是4,可以跟在8的后面,2可以跟在4的后面,当开入的车是5时,必须要重新开一条新的轨道,因为要保证每一条中间轨道上都是递减的序列,后面以此类推。要注意:当一辆车可以开入好几条中间轨道(即好几条轨道上的列车都比当前列车大),选择最小的一辆,并跟在后面(贪心思想)。
代码中,用一个数组表示多条轨道,数组的值表示最左边的列车的值,该数组是一个递增序列,所以在插入新列车时用二分搜索优化。
代码如下:
<span style="font-size:24px;"><strong>#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int a[100005];
int rail[100005];//数组的值表示当前轨道最左边列车
int cnt;
void Binary_search(int x)//二分搜索轨道数组
{
int l , r, mid;
l = 1;
r = cnt;
while(l < r)
{
mid = l + (r - l)/2;
if(rail[mid] > x) r = mid;
else if(rail[mid] < x)l = mid + 1;
}
rail[r] = x;
}
int main()
{
int n, i, j;
scanf("%d", &n);
for(i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
}
cnt = 0;
for(i = 1; i <= n; i++)
{
if(cnt == 0)//当没有列车在中间轨道时
{
cnt++;
rail[cnt] = a[i];
}
else
{
if(rail[cnt] < a[i])//轨道上的列车都比当前列车小
{
rail[++cnt] = a[i];
}
else Binary_search(a[i]);
}
}
cout<<cnt<<endl;
return 0;
}
</strong></span>