KGC:Contextualization Distillation from Large Language Model for KGC,知识图谱补全,大模型上下文蒸馏应用KGC任务

1.文章描述 

Contextualization Distillation from Large Language Model for Knowledge Graph Completion 

 

 

• 确定了当前基于plm的KGC模型语料库的约束,并引入了一种即插即用的方法,即上下文蒸馏,以从llm中提取的原理来增
强较小的KGC模型。
• 在几个公认的KGC数据集上进行了广泛的实验,并利用了各种基线模型。通过这些实验,验证了情境化蒸馏在持续改进较小KGC模型方面的有效性。
• 对所提出方法进行了全面分析,为生成蒸馏路径选择以及合适蒸馏任务的选择提供了有价值的见解和指导。 

 

 

 

一个示例包含我们对llm的指令和生成的描述性上下文。我们使用绿色来突出实体描述提示/生成结果,蓝色来突出三元组描述提示/生成结果。

 

公式1:利用三元组(头实体,关系,尾实体)生成大模型的prompt;

公式2:将prompt输入到大模型,生成描述性文本context

 

 

 

 

 

 

判别损失在下面的附录B1里面

 

 

生成式模型的L-kgc在下面附录B2

 

 

 

这是一个比较新颖的方法去做KGC任务, 但是这种结果的实用性有待研究,代码已经开源,有兴趣的可以自己去复现一下,个人感觉意义不是很大。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医学小达人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值