你知道什么叫做“互质序列”吗?这是一个由神经网络正整数组成的序列,它们的GCD(最大公约数)等于1。
“互质序列”很容易被发现,因为它的限制。但是我们可以通过去掉一个整数来最大化这些整数的GCD。现在给出一个序列,请最大化它的元素的GCD。
input
输入的第一行包含整数T(1<=t<=10)t(1<=t<=10),表示测试用例的数目。
在每个测试用例中,第一行中存在一个整数n(3<=n<=100000)n(3<=n<=100000),表示序列中的整数个数。
然后,由NN整数A1,A2,…,A(1±Ai,10^9)A1,A2,…(A,1,AI,10^9)组成,表示序列中的元素。
output
对于每个测试用例,打印一个包含一个整数的单行,表示最大的GCD。
Sample Input
3
3
1 1 1
5
2 2 2 3 2
4
1 2 4 8
Sample Output
1
2
2
运用前缀gcd和后缀gcd,求出每个数的前后缀gcd,然后可求出把这个数去掉后的gcd(即求出这个数前后缀gcd的gcd),遍历求最大即可。n<=10000,复杂度O(n),不超时
#include<stdio.h>
long long gcd(int a,int b){
return b==0 ? a : gcd(b,a%b);
}
long long max(long long a,long long b){
return a>=b ? a : b;
}
long long a[100005];
long long sums[100005],sume[100005];
int main()
{
int t;
int n;
scanf("%d",&t);
while(t--)
{
int i;
scanf("%d",&n);
for(i=0 ; i<n ; i++)
scanf("%lld",&a[i]);
sums[0]=a[0];
for(i=1 ; i<n ; i++)
sums[i]=gcd(a[i],sums[i-1]);//前缀gcd
sume[n-1]=a[n-1];
for(i=n-2 ; i>=0 ; i--)
sume[i]=gcd(a[i],sume[i+1]);//后缀gcd
long long temp=sume[1];
for(i=1 ; i<n ; i++){
temp=max(temp,gcd(sums[i-1],sume[i+1]));
}
printf("%lld\n",temp);
}
return 0;
}