中文文档: http://sklearn.apachecn.org/cn/stable/tutorial/statistical_inference/settings.html
英文文档: http://sklearn.apachecn.org/en/stable/tutorial/statistical_inference/settings.html
官方文档: http://scikit-learn.org/stable/
GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)
贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者
关于我们: http://www.apachecn.org/organization/209.html
机器学习: scikit-learn 中的设置以及预估对象
数据集
Scikit-learn可以从一个或者多个数据集中学习信息,这些数据集合可表示为2维阵列,也可认为是一个列表。列表的第一个维度代表 样本 ,第二个维度代表 特征 (每一行代表一个样本,每一列代表一种特征)。
样例: iris 数据集(鸢尾花卉数据集)
这个数据集包含150个样本,每个样本包含4个特征:花萼长度,花萼宽度,花瓣长度,花瓣宽度,详细数据可以通过``iris.DESCR``查看。
如果原始数据不是``(n_samples, n_features)``的形状时,使用之前需要进行预处理以供scikit-learn使用。
预估对象
拟合数据: scikit-learn实现最重要的一个API是`estimator`。estimators是基于数据进行学习的任何对象,它可以是一个分类器,回归或者是一个聚类算法,或者是从原始数据中提取/过滤有用特征的变换器。
所有的拟合模型对象拥有一个名为``fit``的方法,参数是一个数据集(通常是一个2维列表):
拟合模型对象构造参数: 在创建一个拟合模型时,可以设置相关参数,在创建之后也可以修改对应的参数:
拟合参数: 当拟合模型完成对数据的拟合之后,可以从拟合模型中获取拟合的参数结果,所有拟合完成的参数均以下划线(_)作为结尾:
中文文档: http://sklearn.apachecn.org/cn/stable/tutorial/statistical_inference/settings.html
英文文档: http://sklearn.apachecn.org/en/stable/tutorial/statistical_inference/settings.html
官方文档: http://scikit-learn.org/stable/
GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)
贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者
关于我们: http://www.apachecn.org/organization/209.html
有兴趣的们也可以和我们一起来维护,持续更新中 。。。
机器学习交流群: 629470233