rosefun96的博客

深度学习、算法交流q群596506387。

RF,GBDT,Xgboost,lightgbm理论比较

由于本文是基于面试整理,因此不会过多的关注公式和推导,如果希望详细了解算法内容,敬请期待后文。      RF、GBDT和XGBoost都属于集成学习(Ensemble Learning),集成学习的目的是通过结合多个基学习器的预测结果来改善单个学习器的泛化能力和鲁棒性。   根据个体学习器...

2019-04-25 09:22:52

阅读数 6

评论数 0

实践 important sample

1实践 # -*- coding: utf-8 -*- """ Created on Mon Apr 22 21:19:55 2019 @author: win10 """ import numpy as np fr...

2019-04-22 21:56:06

阅读数 20

评论数 0

Windows10系统安装Ubuntu

背景 其实已经安装了Ubuntu,但是滚动界面时,会重新刷新屏幕,网上好像出现这种情况不多,朋友建议重装Ubuntu,和第一次用系统17不一样,选了更为稳定的16.04。 1 步骤 1、下载 Ubuntu 下载链接 选了这个, 2、下载ultraiso https://www.u...

2019-04-18 16:20:46

阅读数 10

评论数 0

从实践看神经网络拟合任何函数

1 理论 理论部分看 Multilayer Feedforward Networks are Universal Approximators ,公式比较繁琐,英文看起来晦涩。 总的来说就是,多层神经网络在任意的的隐层节点和专属压缩函数(看做非线性激活函数),能够逼近任意Borel 测量函数. 2 ...

2019-04-18 16:09:12

阅读数 29

评论数 0

Ubuntu docker入门笔记

1 简介 docker把底层系统也封装进入,无论什么系统都可以直接打开,并用原始的系统环境进行运行? 2 实践 安装: sudo apt install curl curl -fsSL get.docker.com -o get-docker.sh sudo sh get-docker...

2019-04-17 13:33:29

阅读数 11

评论数 0

python format格式

import numpy as np print("{:.2%}".format(np.pi)) print("{:.2}".format(np.pi)) print("pi:{:.2},exp(pi):{:.5}".format(...

2019-04-10 14:09:24

阅读数 16

评论数 0

LeetCode 20. 有效的括号

1 题目 链接:有效字符 考察点:栈 import java.util.Scanner; import java.util.*; public class Solution { public static boolean isValid(String s) { Stac...

2019-04-07 20:58:12

阅读数 15

评论数 0

os makedir自动创建路径

savePath = "./result/0402" if not os.path.exists(savePath): os.makedirs(savePath)

2019-04-02 16:06:43

阅读数 16

评论数 0

深度学习网课

汇总 1 cs231n 计算机视觉

2019-03-31 15:39:20

阅读数 78

评论数 0

loss反向传播

1 理论 损失函数的反向传播就是层层链式求导,得到每个矩阵或者向量的增量,然后更新。 2 实践 import numpy as np x = np.array([[0,0,1], [0,1,1],[1,0,1],[1,1,1]]) y = np.array([[0,1,1,0]])....

2019-03-31 15:37:45

阅读数 109

评论数 0

神经网络loss Nan

1.原因 有可能是学习率太高(调为0,看是否出现这个问题); 如果仍有,说明是那个地方出现 /0, log(0)等可能性,导致出现无穷大的数。 参考: 1 为什么用tensorflow训练网络,出现了loss=nan,accuracy总是一个固定值? ...

2019-03-29 16:09:09

阅读数 25

评论数 0

numpy 函数汇总

1 常用函数 判断: 同时满足两个条件: my_array = arange(10) np.where((my_array > 3) & (my_array < 7)) 满足其中一个条件: res = np.where(np.logical_or(ma...

2019-03-28 19:21:27

阅读数 16

评论数 0

浅谈Attention UNet

1 理论 其中,g就是解码部分的矩阵,xl是编码(左边)的矩阵,x经过乘于系数(完成Attention)和g一起concat,进入下一层解码。 数学公式: 2 实践 Pytorch Attention Unet: class Attention_block(nn.Module...

2019-03-28 14:33:30

阅读数 150

评论数 0

图像后处理去除比较小的连通域

1. 理论 >>> from skimage import morphology >>> a = np.array([[0, 0, 0, 1, 0], ... [1, 1, 1, ...

2019-03-28 11:15:53

阅读数 23

评论数 0

关于后处理

1 图像语义分割Iou阈值 def iou_metric_batch(y_true_in, y_pred_in): batch_size = y_true_in.shape[0] metric = [] for batch in range(batch_size):...

2019-03-27 21:07:22

阅读数 42

评论数 0

图像预处理简要

1. 预处理操作 1.原图和label图都需要旋转:90度,180度,270度; 2.原图和label图都需要做沿y轴的镜像操作; 3.原图做模糊操作; 4.原图做光照调整操作; 5.原图做增加噪声操作(高斯噪声,椒盐噪声); ...

2019-03-27 20:24:33

阅读数 114

评论数 0

浅谈VAE

1 理论 假设后验分布p(z|x)是服从正态分布。 两个loss, 一个是重构误差,一个是p(z)分布和标准正态分布的散度(假定p(z)是服从标准正态分布)。 2 实践 x = Input(shape=(original_dim,)) h = Dense(intermediate_d...

2019-03-27 14:44:42

阅读数 36

评论数 0

灰度图

1 理论 图像可以分为RGB(3通道,每个通道 的值是0-255),灰度图(单通道,值范围0-255),二值图(0:黑色,1:白色)。 fig,ax = plt.subplots(2,1,figsize = (5,5)) ax[0].imshow(tmp) ax[1].imshow(tmp2,cm...

2019-03-26 20:51:33

阅读数 22

评论数 1

读取照片,显示照片, Resize,保存照片方法

1.读取 1.1 Keras读取 使用np.array来存储照片 import numpy as np from keras.preprocessing.image import load_img train = [np.array(load_img("./data/mg/im...

2019-03-26 17:27:50

阅读数 167

评论数 0

python双冒号::-1

1实践 ::1,代表本身 ::-1,代表从后往前截取 再比如: a = (1,3,5) print(a[::1]) print(a[::-1]) print(a[::2]) print(a[::-2]) output: (1, 3, 5) (5, 3, 1) (1,...

2019-03-25 22:00:19

阅读数 23

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭