题目
题意
在一场比赛中有好的运动员和较差的运动员,现在每两个运动员之间有一场比赛,而且,确定了这两个人之中必定有一个是好的,另一个是较差的。而且还会知道几个人到底是好的还是较差的,最后就问你是不是可以将其所有人准确的分成两部分。
输入 N,M,X,Y分别表示一共有几个人,几场比赛,几个已知的好运动员,几个已知的较差的运动员,后续X行会输入好运动员的编号,Y行会输出差的运动员的编号。
思路
看到这个题我第一想法就是带权并查集,直接把分好的运动员除外,只要没分好的运动员间的关系确定了,分成了两部分,则作有人即可分成两部分。
我们用两个数组,per[ ]数组去维护每个点的父亲节点是什么,vis[ ]数组去维护这个点与父亲节点之间的关系,我们用 0 表示同类,用 1 表示不是同一类。每进行一场比赛我们就对这两个人之间的关系加以判断,如果这两个人之间已经确定了关系,是不同类我们就无伤大雅,但是如果这两个人之间是同类的话我们就需要返回结果了,表示不可能分成两部分,最后应该所有的人都有同一个父亲节点,而且同类之间没有比赛的冲突。说明结果可以分成两部分。
至于在状态压缩的时候是如何去维护vis[ ]数组的我们可以做图来看,在合并两个不同集合的时候怎么去维护vis[ ]数组我们也要画图去看。
根据图片我们就可以得到状态压缩时的vis [ ]的维护方式,代码里有体现,自己思考一下。
fx与fy之间的关系,可以通过 x与fx, y与fy,x与y 间的关系去确定(这里x与y是不同类用1表示)。
ac code:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int maxn = 1010;
const int inf = 0x3f3f3f3f;
int per[maxn];
int vis[maxn];
int v[maxn];
void init()
{
for(int i=0;i<maxn;i++){
per[i]=i;
vis[i]=0;
v[i]=0;
}
}
int find(int x){
if(x==per[x])return x;
int t=per[x];
per[x] = find(per[x]);
vis[x] = vis[t]^vis[x];
return per[x];
}
int judge(int x,int y){
int fx = find(x);
int fy = find(y);
//cout<<fx<<" "<<fy<<endl;
if(fx==fy){
if(vis[y]^vis[x]==0)return 0;
}
else{
per[fx]=fy;
vis[fx]=vis[x]^vis[y]^1;
}
return 1;
}
int main()
{
int n,m,x,y;
while(~scanf("%d%d%d%d",&n,&m,&x,&y)){
init();
int flag=0,key;
for(int i=0;i<m;i++){
int a,b;
scanf("%d%d",&a,&b);
if(i==0){
key=a;
}
if(judge(a,b)==0){
flag=1;
}
/*for(int i=1;i<=n;i++){
cout<<"per:"<<per[i]<<" "<<"vis: "<<vis[i]<<endl;
}*/
//cout<<flag<<endl;
}
for(int i=1;i<=x;i++){
int xx;
scanf("%d",&xx);
v[xx]=1;
}
for(int i=1;i<=y;i++){
int xx;
scanf("%d",&xx);
v[xx]=1;
}
int tmp;
for(int i=1;i<=n;i++){
if(!v[1]){
tmp=find(i);
v[i]=1;
break;
}
}
for(int i=1;i<=n;i++){
if(!v[i]){
if(find(i)!=tmp)
flag=1;
}
}
/*for(int i=1;i<=n;i++){
cout<<"per:"<<per[i]<<" "<<"vis: "<<vis[i]<<endl;
}*/
if(flag)printf("NO\n");
else{
printf("YES\n");
}
}
return 0;
}