机器学习
文章平均质量分 52
labPqsdr
这个作者很懒,什么都没留下…
展开
-
k-近邻算法(KNN)
优点:精度高,对异常值不敏感,不需要数据输入假定缺点:计算复杂度高,空间复杂度高适用数据范围:数值型(在无限的数据中选取,数据连续)和标称型(在有限的数据中选取,存在true和false两种结果,数据离散)工作原理:当存在一个训练样本集,且样本中的每个数据都存在标签,即能知道样本集中每个数据与所属分类的对应关系。 在输入没有标签的新数据后,将新数据的每个特征与样本集...原创 2018-04-01 21:59:45 · 328 阅读 · 0 评论 -
tensorflow学习笔记(6)--- 训练模型
在神经网络优化算法中,用的最多的是反向传播算法。通过tensorflow实现反向传播算法的第一步是使用tensorflow来表达一个batch, tensorflow中提供了placeholder机制用于提供输入数据。placeholder相当于定义了一个位置,这个位置中的数据在程序运行时再指定。这样在程序中只需要将数据通过placeholder传入计算图中。通过placeholder实现前向传播...原创 2018-05-01 13:55:01 · 567 阅读 · 0 评论 -
tensorflow学习笔记(5)--- 神经网络参数与tensorflow变量
在tensorflow中,变量(tf.Variable)的作用是保存和更新神经网络中的参数。可在tensorflow中声明一个2*3,元素均值为0且标准差为2的矩阵变量(可通过mean参数指定平均值):weights=tf.Variable(tf.random_normal[2,3],stddev=2)在tensorflow中变量的初始值可以设置成随机数、常数或者是通过其他变量计算得到。在神经网络...原创 2018-05-01 01:50:59 · 529 阅读 · 0 评论 -
tensorflow学习笔记(4)--- 前向传播算法
在神经网络中,一个神经元有多个输入和一个输出,每个神经元的输入既可以是其他神经元的输出,也可以是整个神经网络的输入。神经网络不同的结构指的就是不同ing神经元之间不同的连接结构。如图所示,一个最简单的神经元结构的输出就是所有输入的加权和,不同输入的权重就是神经网络的参数。神经网络的优化过程就是优化神经元中参数的取值的过程全连接神经网络:全连接指的是相邻两层间的任意两个节点都有连接。计算神经网络的前...原创 2018-04-30 22:14:16 · 487 阅读 · 0 评论 -
tensorflow学习笔记(3)---神经网络简介
通过tensorflow游乐场(http://playground.tensorflow.org)可以大致理解神经网络整体过程。神经网络分为输入层,输出层和隐藏层。通过将实际问题中的对象进行特征提取来得到相应的特征向量作为神经网络的输入。使用神经网络解决分类问题主要可分为4个步骤: 1. 提取问题中实体的特征向量作为神经网络的输入。 2. 定义神经网络的结构,并定义如何从神经网络的输入得到输出,即...原创 2018-04-30 21:22:40 · 340 阅读 · 0 评论 -
tensorflow学习笔记(2)--- 会话(session)
会话拥有并管理tensorflow程序运行时的所有资源。当所有计算完成后需要关闭会话来帮助系统回收资源,否则可能会出现资源泄露的问题。tenorflow中使用会话的模式一般有两种: 1. 需要明确调用会话生成函数和关闭会话函数: #创建一个会话 sess=tf.Session() sess.run(...) sess.close() 然而,当程序因为异常而退出时,关闭会话的函数可能就不会执行...原创 2018-04-30 19:53:06 · 692 阅读 · 0 评论 -
tensorflow学习笔记(1) ----关于张量的理解
在tensorflow中,数据都以张量的形式来表示。张量在功能的角度上可以被理解为多维数组,其中n阶张量可以理解为一个n维数组。但张量在tensorflow中的实现是对于运算结果的引用,张量中不真正的保存数字,而是保存这些数字的运算过程。张量中主要保存了三个属性:name, shape, typename不仅是张量中的唯一标识符,还给出了这个张良是如何计算出来的。张量的命名通过“node:src_...原创 2018-04-30 16:40:01 · 833 阅读 · 0 评论