【datawhale-gitmodel】笔记整理之Pandas基础

第二章 Pandas基础

2.1 文件的读取和写入

2.1.1 文件读取

  • pandas 可以读取的文件格式有很多,主要介绍读取 csv, excel, txt 文件
  1. 公共参数介绍
  • header=None 表示第一行不作为列名
  • index_col 表示把某一列或几列作为索引
  • usecols 表示读取列的集合,默认读取所有的列
  • parse_dates 表示需要转化为时间的列
  • nrows 表示读取的数据行数
In [10]: pd.read_table('data/my_table.txt', header=None)
Out[10]: 
      0     1     2                3
0  col1  col2  col3             col4
1     2     a   1.4   apple 2020/1/1
2     3     b   3.4  banana 2020/1/2
3     6     c   2.5  orange 2020/1/5
4     5     d   3.2   lemon 2020/1/7

In [11]: pd.read_csv('data/my_csv.csv', index_col=['col1', 'col2'])
Out[11]: 
           col3    col4      col5
col1 col2                        
2    a      1.4   apple  2020/1/1
3    b      3.4  banana  2020/1/2
6    c      2.5  orange  2020/1/5
5    d      3.2   lemon  2020/1/7

In [12]: pd.read_table('data/my_table.txt', usecols=['col1', 'col2'])
Out[12]: 
   col1 col2
0     2    a
1     3    b
2     6    c
3     5    d

In [13]: pd.read_csv('data/my_csv.csv', parse_dates=['col5'])
Out[13]: 
   col1 col2  col3    col4       col5
0     2    a   1.4   apple 2020-01-01
1     3    b   3.4  banana 2020-01-02
2     6    c   2.5  orange 2020-01-05
3     5    d   3.2   lemon 2020-01-07

In [14]: pd.read_excel('data/my_excel.xlsx', nrows=2)
Out[14]: 
   col1 col2  col3    col4      col5
0     2    a   1.4   apple  2020/1/1
1     3    b   3.4  banana  2020/1/2
  1. 分隔符问题
  • 读取 txt 文件时,经常遇到分隔符非空格的情况, read_table 有一个分割参数 sep ,它使得用户可以自定义分割符号,进行 txt 数据的读取

  • 使用前

In [15]: pd.read_table('data/my_table_special_sep.txt')
Out[15]: 
              col1 |||| col2
0  TS |||| This is an apple.
1    GQ |||| My name is Bob.
2         WT |||| Well done!
3    PT |||| May I help you?
  • 使用后
In [16]: pd.read_table('data/my_table_special_sep.txt',
   ....:               sep=' \|\|\|\| ', engine='python')
   ....: 
Out[16]: 
  col1               col2
0   TS  This is an apple.
1   GQ    My name is Bob.
2   WT         Well done!
3   PT    May I help you?
  • 使用 read_table 的时注意,参数 sep 中使用的是正则表达式,因此需要对 | 进行转义变成 \| ,否则无法读取到正确的结果

2.1.2 数据写入

  1. 在数据写入中,最常用的操作是把 index 设置为 False
  • 特别当索引没有特殊意义的时候,这样的行为能把索引在保存的时候去除
In [17]: df_csv.to_csv('data/my_csv_saved.csv', index=False)

In [18]: df_excel.to_excel('data/my_excel_saved.xlsx', index=False)
  1. pandas 中没有定义 to_table 函数,但是 to_csv 可以保存为 txt 文件
  • 允许自定义分隔符,常用制表符 \t 分割
In [19]: df_txt.to_csv('data/my_txt_saved.txt', sep='\t', index=False)
  1. 将表格快速转为 markdownlatex 语言,使用 to_markdownto_latex 函数
  • 需要安装 tabulate
In [20]: print(df_csv.to_markdown())
|    |   col1 | col2   |   col3 | col4   | col5     |
|---:|-------:|:-------|-------:|:-------|:---------|
|  0 |      2 | a      |    1.4 | apple  | 2020/1/1 |
|  1 |      3 | b      |    3.4 | banana | 2020/1/2 |
|  2 |      6 | c      |    2.5 | orange | 2020/1/5 |
|  3 |      5 | d      |    3.2 | lemon  | 2020/1/7 |

In [21]: print(df_csv.to_latex())
\begin{tabular}{lrlrll}
\toprule
{} &  col1 & col2 &  col3 &    col4 &      col5 \\
\midrule
0 &     2 &    a &   1.4 &   apple &  2020/1/1 \\
1 &     3 &    b &   3.4 &  banana &  2020/1/2 \\
2 &     6 &    c &   2.5 &  orange &  2020/1/5 \\
3 &     5 &    d &   3.2 &   lemon &  2020/1/7 \\
\bottomrule
\end{tabular}

2.2 基本数据结构

  • pandas 中具有两种基本的数据存储结构,存储一维 valuesSeries 和存储二维 valuesDataFrame

2.2.1 Series

  1. Series 一般由四个部分组成,分别是序列的值 data 、索引 index 、存储类型 dtype 、序列的名字 name
  • 索引也可以指定它的名字,默认为空
In [22]: s = pd.Series(data = [100, 'a', {'dic1':5}],
   ....:               index = pd.Index(['id1', 20, 'third'], name='my_idx'),
   ....:               dtype = 'object',
   ....:               name = 'my_name')

In [23]: s
Out[23]: 
my_idx
id1              100
20                 a
third    {'dic1': 5}
Name: my_name, dtype: object
  1. object类型
  • object 代表一种混合类型,正如上面的例子中存储了整数、字符串以及 Python 的字典数据结构

  • 目前 pandas 把纯字符串序列默认认为是一种 object 类型的序列,但它也可以用 string 类型存储

  • 序列的值 data 、索引 index 、存储类型 dtype 、序列的名字 name 、序列的长度shape,可以通过 . 的方式来获取

In [24]: s.values
Out[24]: array([100, 'a', {'dic1': 5}], dtype=object)

In [25]: s.index
Out[25]: Index(['id1', 20, 'third'], dtype='object', name='my_idx')

In [26]: s.dtype
Out[26]: dtype('O')

In [27]: s.name
Out[27]: 'my_name'

In [28]: s.shape
Out[28]: (3,)
  • 取出单个索引对应的值,可以用 [index_item]
In [29]: s['third']
Out[29]: {'dic1': 5}

2.2.2 DataFrame

  1. DataFrameSeries 的基础上增加了列索引,一个数据框可以由二维的 data 与行列索引来构造
In [30]: data = [[1, 'a', 1.2], [2, 'b', 2.2], [3, 'c', 3.2]]

In [31]: df = pd.DataFrame(data = data,
   ....:                   index = ['row_%d'%i for i in range(3)],
   ....:                   columns=['col_0', 'col_1', 'col_2'])
   ....: 

In [32]: df
Out[32]: 
       col_0 col_1  col_2
row_0      1     a    1.2
row_1      2     b    2.2
row_2      3     c    3.2
  • 更常见情况是采用从列索引名到数据的映射来构造数据框,同时再加上行索引
In [33]: df = pd.DataFrame(data = {'col_0': [1,2,3], 'col_1':list('abc'),
   ....:                           'col_2': [1.2, 2.2, 3.2]},
   ....:                   index = ['row_%d'%i for i in range(3)])
   ....: 

In [34]: df
Out[34]: 
       col_0 col_1  col_2
row_0      1     a    1.2
row_1      2     b    2.2
row_2      3     c    3.2
  1. 由于以上映射关系,在 DataFrame 中可以用 [col_name][col_list] 来取出相应的列与由多个列组成的表,结果分别为 SeriesDataFrame
In [35]: df['col_0']
Out[35]: 
row_0    1
row_1    2
row_2    3
Name: col_0, dtype: int64

In [36]: df[['col_0', 'col_1']]
Out[36]: 
       col_0 col_1
row_0      1     a
row_1      2     b
row_2      3     c
  1. Series 类似,在数据框中同样可以取出相应的属性
In [37]: df.values
Out[37]: 
array([[1, 'a', 1.2],
       [2, 'b', 2.2],
       [3, 'c', 3.2]], dtype=object)

In [38]: df.index
Out[38]: Index(['row_0', 'row_1', 'row_2'], dtype='object')

In [39]: df.columns
Out[39]: Index(['col_0', 'col_1', 'col_2'], dtype='object')

In [40]: df.dtypes # 返回的是值为相应列数据类型的Series
Out[40]: 
col_0      int64
col_1     object
col_2    float64
dtype: object

In [41]: df.shape
Out[41]: (3, 3)
  1. 转置 DataFrame.T
In [42]: df.T
Out[42]: 
      row_0 row_1 row_2
col_0     1     2     3
col_1     a     b     c
col_2   1.2   2.2   3.2

2.3 常用基本函数

2.3.1 汇总函数

  1. head, tail 函数分别表示返回表或者序列的前 n 行和后 n 行,其中 n 默认为5:
In [46]: df.head(2)
Out[46]: 
                          School     Grade            Name  Gender  Height  Weight Transfer
0  Shanghai Jiao Tong University  Freshman    Gaopeng Yang  Female   158.9    46.0        N
1              Peking University  Freshman  Changqiang You    Male   166.5    70.0        N

In [47]: df.tail(3)
Out[47]: 
                            School      Grade            Name  Gender  Height  Weight Transfer
197  Shanghai Jiao Tong University     Senior  Chengqiang Chu  Female   153.9    45.0        N
198  Shanghai Jiao Tong University     Senior   Chengmei Shen    Male   175.3    71.0        N
199            Tsinghua University  Sophomore     Chunpeng Lv    Male   155.7    51.0        N
  1. info, describe 分别返回表的 信息概况 和表中 数值列对应的主要统计量
In [48]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 7 columns):
 #   Column    Non-Null Count  Dtype  
---  ------    --------------  -----  
 0   School    200 non-null    object 
 1   Grade     200 non-null    object 
 2   Name      200 non-null    object 
 3   Gender    200 non-null    object 
 4   Height    183 non-null    float64
 5   Weight    189 non-null    float64
 6   Transfer  188 non-null    object 
dtypes: float64(2), object(5)
memory usage: 11.1+ KB

In [49]: df.describe()
Out[49]: 
           Height      Weight
count  183.000000  189.000000
mean   163.218033   55.015873
std      8.608879   12.824294
min    145.400000   34.000000
25%    157.150000   46.000000
50%    161.900000   51.000000
75%    167.500000   65.000000
max    193.900000   89.000000
  • info, describe 只能实现较少信息的展示,若想对一份数据集进行全面且有效的观察,特别是在列较多的情况下,推荐使用 pandas-profiling

2.3.2 特征统计函数

  1. sum, mean, median, var, std, max, min
In [50]: df_demo = df[['Height', 'Weight']]

In [51]: df_demo.mean()
Out[51]: 
Height    163.218033
Weight     55.015873
dtype: float64

In [52]: df_demo.max()
Out[52]: 
Height    193.9
Weight     89.0
dtype: float64
  1. quantile, count, idxmax
In [53]: df_demo.quantile(0.75) #返回分位数
Out[53]: 
Height    167.5
Weight     65.0
Name: 0.75, dtype: float64

In [54]: df_demo.count() #返回非缺失值个数
Out[54]: 
Height    183
Weight    189
dtype: int64

In [55]: df_demo.idxmax() #返回最大值对应的索引,idxmin是对应的函数
Out[55]: 
Height    193
Weight      2
dtype: int64
  1. 上面所有函数由于返回的是标量,所以又称为聚合函数,有一个公共参数为axis
  • 默认为0代表逐列聚合,1表示逐行聚合
In [56]: df_demo.mean(axis=1).head() # 在这个数据集上体重和身高的均值并没有意义
Out[56]: 
0    102.45
1    118.25
2    138.95
3     41.00
4    124.00
dtype: float64

2.3.3 唯一值函数

  1. 对序列使用 unique,得到其唯一值组成的列表;使用nunique 得到其唯一值的个数
In [57]: df['School'].unique()
Out[57]: 
array(['Shanghai Jiao Tong University', 'Peking University',
       'Fudan University', 'Tsinghua University'], dtype=object)

In [58]: df['School'].nunique()
Out[58]: 4
  1. value_counts 可以得到唯一值和其对应出现的频数
In [59]: df['School'].value_counts()
Out[59]: 
Tsinghua University              69
Shanghai Jiao Tong University    57
Fudan University                 40
Peking University                34
Name: School, dtype: int64
  1. 若想观察多个列组合的唯一值,可以使用 drop_duplicates
  • 关键参数是 keep ,默认值 first 表示每个组合保留第一次出现的所在行, last 表示保留最后一次出现的所在行, False 表示把所有重复组合所在的行剔除
In [60]: df_demo = df[['Gender','Transfer','Name']]

In [61]: df_demo.drop_duplicates(['Gender', 'Transfer']) #默认值为first
Out[61]: 
    Gender Transfer            Name
0   Female        N    Gaopeng Yang
1     Male        N  Changqiang You
12  Female      NaN        Peng You
21    Male      NaN   Xiaopeng Shen
36    Male        Y    Xiaojuan Qin
43  Female        Y      Gaoli Feng

In [62]: df_demo.drop_duplicates(['Gender', 'Transfer'], keep='last')
Out[62]: 
     Gender Transfer            Name
147    Male      NaN        Juan You
150    Male        Y   Chengpeng You
169  Female        Y   Chengquan Qin
194  Female      NaN     Yanmei Qian
197  Female        N  Chengqiang Chu
199    Male        N     Chunpeng Lv

In [63]: df_demo.drop_duplicates(['Name', 'Gender'],
   ....:                      keep=False).head() # 保留只出现过一次的性别和姓名组合
   ....: 
Out[63]: 
   Gender Transfer            Name
0  Female        N    Gaopeng Yang
1    Male        N  Changqiang You
2    Male        N         Mei Sun
4    Male        N     Gaojuan You
5  Female        N     Xiaoli Qian

In [64]: df['School'].drop_duplicates() # 在Series上也可以使用
Out[64]: 
0    Shanghai Jiao Tong University
1                Peking University
3                 Fudan University
5              Tsinghua University
Name: School, dtype: object
  1. duplicated 返回是否为唯一值的布尔列表
  • drop_duplicates 的功能类似,但返回的不是多个列组合的唯一值
  • 返回的序列,把重复元素设为 True ,否则为 False
  • drop_duplicates 等价于把 duplicatedTrue 的对应行剔除
In [65]: df_demo.duplicated(['Gender', 'Transfer']).head()
Out[65]: 
0    False
1    False
2     True
3     True
4     True
dtype: bool

In [66]: df['School'].duplicated().head() # 在Series上也可以使用
Out[66]: 
0    False
1    False
2     True
3    False
4     True
Name: School, dtype: bool

2.3.4 替换函数

  • 一般而言,替换操作是针对某一个列进行的,因此下面的例子都以 Series 举例
  • pandas 中的替换函数可以归纳为三类:映射替换(包含replace方法、str.replace 方法、cat.codes 方法)、逻辑替换、数值替换
  1. 映射替换
  • replace 中,可以通过字典构造,或者传入两个列表来进行替换
In [67]: df['Gender'].replace({'Female':0, 'Male':1}).head()
Out[67]: 
0    0
1    1
2    1
3    0
4    1
Name: Gender, dtype: int64

In [68]: df['Gender'].replace(['Female', 'Male'], [0, 1]).head()
Out[68]: 
0    0
1    1
2    1
3    0
4    1
Name: Gender, dtype: int64
  • replace 特殊的方向替换
    • method 参数为 ffill:用前面一个最近的未被替换的值进行替换
    • method 参数为 bfill:使用后面最近的未被替换的值进行替换
In [69]: s = pd.Series(['a', 1, 'b', 2, 1, 1, 'a'])
		 s
Out[69]: 
0    a
1    1
2    b
3    2
4    1
5    1
6    a
dtype: object

In [70]: s.replace([1, 2], method='ffill')
Out[70]: 
0    a
1    a
2    b
3    b
4    b
5    b
6    a
dtype: object

In [71]: s.replace([1, 2], method='bfill')
Out[71]: 
0    a
1    b
2    b
3    a
4    a
5    a
6    a
dtype: object
  • 正则替换使用 str.replace:对于 replace 而言可以使用正则替换,但是当前版本对于 string 类型的正则替换还存在 bug ,因此如有此需求,请选择 str.replace 进行替换操作
  1. 逻辑替换
  • 包括 wheremask ,这两个函数是完全对称的

  • where 在传入条件为 False 的对应行进行替换

  • mask 在传入条件为 True 的对应行进行替换

  • 当不指定替换值时,替换为缺失值

In [72]: s = pd.Series([-1, 1.2345, 100, -50])

In [73]: s.where(s<0)
Out[73]: 
0    -1.0
1     NaN
2     NaN
3   -50.0
dtype: float64

In [74]: s.where(s<0, 100)
Out[74]: 
0     -1.0
1    100.0
2    100.0
3    -50.0
dtype: float64

In [75]: s.mask(s<0)
Out[75]: 
0         NaN
1      1.2345
2    100.0000
3         NaN
dtype: float64

In [76]: s.mask(s<0, -50)
Out[76]: 
0    -50.0000
1      1.2345
2    100.0000
3    -50.0000
dtype: float64
  • 传入的条件只需是与被调用的 Series 索引一致的布尔序列即可:
In [77]: s_condition= pd.Series([True,False,False,True],index=s.index)

In [78]: s.mask(s_condition, -50)
Out[78]: 
0    -50.0000
1      1.2345
2    100.0000
3    -50.0000
dtype: float64
  1. 数值替换
  • 包含 round, abs, clip 方法
  • round:按照给定精度四舍五入
  • abs:取绝对值
  • clip:截断
In [79]: s = pd.Series([-1, 1.2345, 100, -50])

In [80]: s.round(2)
Out[80]: 
0     -1.00
1      1.23
2    100.00
3    -50.00
dtype: float64

In [81]: s.abs()
Out[81]: 
0      1.0000
1      1.2345
2    100.0000
3     50.0000
dtype: float64

In [82]: s.clip(0, 2) # 前两个数分别表示上下截断边界
Out[82]: 
0    0.0000
1    1.2345
2    2.0000
3    0.0000
dtype: float64
    
In [83]: s.clip(0,2).replace(2,5)   #将超出边界的值替换为自定义的值,但是这种方法只能把某一边的边界值换为自定义值
Out[83]: 
0    0.0000
1    1.2345
2    5.0000
3    0.0000
dtype: float64

In [83]: s.mask(s>2, 5).mask(s<0, 5)   #这种方法可以把超出边界的值都替换为自定义值
Out[83]: 
0    5.0000
1    1.2345
2    5.0000
3    5.0000
dtype: float64

2.3.5 排序函数

  • 排序共有两种方式,一是值排序(sort_values),二是索引排序(sort_index
  1. 值排序
  • 单列排序:默认参数 ascending=True 为升序
In [83]: df_demo = df[['Grade', 'Name', 'Height', 'Weight']].set_index(['Grade','Name'])

In [84]: df_demo.sort_values('Height').head()
Out[84]: 
                         Height  Weight
Grade     Name                         
Junior    Xiaoli Chu      145.4    34.0
Senior    Gaomei Lv       147.3    34.0
Sophomore Peng Han        147.8    34.0
Senior    Changli Lv      148.7    41.0
Sophomore Changjuan You   150.5    40.0

In [85]: df_demo.sort_values('Height', ascending=False).head() #降序
Out[85]: 
                        Height  Weight
Grade    Name                         
Senior   Xiaoqiang Qin   193.9    79.0
         Mei Sun         188.9    89.0
         Gaoli Zhao      186.5    83.0
Freshman Qiang Han       185.3    87.0
Senior   Qiang Zheng     183.9    87.0
  • 多列排序:例如在体重相同的情况下,对身高进行排序,并且保持身高降序排列,体重升序排列
In [86]: df_demo.sort_values(['Weight','Height'],ascending=[True,False]).head()
Out[86]: 
                       Height  Weight
Grade     Name                       
Sophomore Peng Han      147.8    34.0
Senior    Gaomei Lv     147.3    34.0
Junior    Xiaoli Chu    145.4    34.0
Sophomore Qiang Zhou    150.5    36.0
Freshman  Yanqiang Xu   152.4    38.0
  1. 索引排序
  • 用法和值排序完全一致

  • 但是元素的值在索引中,需要指定索引层的名字或者层号,用参数 level 表示

  • 需要注意的是字符串的排列顺序由字母顺序决定

In [87]: df_demo.sort_index(level=['Grade','Name'],ascending=[True,False]).head()
Out[87]: 
                        Height  Weight
Grade    Name                         
Freshman Yanquan Wang    163.5    55.0
         Yanqiang Xu     152.4    38.0
         Yanqiang Feng   162.3    51.0
         Yanpeng Lv        NaN    65.0
         Yanli Zhang     165.1    52.0

2.3.6 apply方法

  1. apply 方法常用于 DataFrame 的行迭代或者列迭代
  • axis 默认为0代表逐列聚合,1表示逐行聚合

  • apply 的参数往往是一个以序列为输入的函数

  • 例如对于 .mean() ,使用 apply 可以如下地写出

In [88]: df_demo = df[['Height', 'Weight']]

In [89]: def my_mean(x):
   ....:     res = x.mean()
   ....:     return res

In [90]: df_demo.apply(my_mean)
Out[90]: 
Height    163.218033
Weight     55.015873
dtype: float64
  1. 利用 lambda 表达式使得书写简洁,这里的 x 就指代被调用的 df_demo 表中逐个输入的序列
In [91]: df_demo.apply(lambda x:x.mean())
Out[91]: 
Height    163.218033
Weight     55.015873
dtype: float64
  • 若指定 axis=1 ,那么每次传入函数的就是行元素组成的 Series ,其结果与之前的逐行均值结果一致
In [92]: df_demo.apply(lambda x:x.mean(), axis=1).head()
Out[92]: 
0    102.45
1    118.25
2    138.95
3     41.00
4    124.00
dtype: float64
  1. mad 函数返回的是一个序列中偏离该序列均值的绝对值大小的均值
  • 例如序列1,3,7,10中,均值为5.25,每一个元素偏离的绝对值为4.25,2.25,1.75,4.75,这个偏离序列的均值为3.25

  • 例如利用 apply 计算升高和体重的 mad 指标

In [93]: df_demo.apply(lambda x:(x-x.mean()).abs().mean())
Out[93]: 
Height     6.707229
Weight    10.391870
dtype: float64
  • 这与使用内置的 mad 函数计算结果一致
In [94]: df_demo.mad()
Out[94]: 
Height     6.707229
Weight    10.391870
dtype: float64
  1. 谨慎使用apply
  • apply 的自由度很高,但是速度慢
  • 一般而言,使用 pandas 的内置函数处理和 apply 来处理同一个任务,其速度会相差较多
  • 只有在确实存在自定义需求的情境下才考虑使用 apply

2.4 窗口对象

  • pandas 中有3类窗口,分别是滑动窗口 rolling 、扩张窗口 expanding 以及指数加权窗口 ewm

2.4.1 滑窗对象

  1. 使用 .rolling 得到滑窗对象,其最重要的参数为窗口大小 window
In [95]: s = pd.Series([1,2,3,4,5])

In [96]: roller = s.rolling(window = 3)

In [97]: roller
Out[97]: Rolling [window=3,center=False,axis=0]
  • 得到滑窗对象后,能够使用相应的聚合函数进行计算,需要注意的是窗口包含当前行所在的元素,例如在第四个位置进行均值运算时,应当计算(2+3+4)/3,而不是(1+2+3)/3
In [98]: roller.mean()
Out[98]: 
0    NaN
1    NaN
2    2.0
3    3.0
4    4.0
dtype: float64

In [99]: roller.sum()
Out[99]: 
0     NaN
1     NaN
2     6.0
3     9.0
4    12.0
dtype: float64
  1. 对于滑动相关系数或滑动协方差的计算
In [100]: s2 = pd.Series([1,2,6,16,30])

In [101]: roller.cov(s2)
Out[101]: 
0     NaN
1     NaN
2     2.5
3     7.0
4    12.0
dtype: float64

In [102]: roller.corr(s2)
Out[102]: 
0         NaN
1         NaN
2    0.944911
3    0.970725
4    0.995402
dtype: float64
  • 支持使用 apply 传入自定义函数,其传入值是对应窗口的 Series ,例如上述的均值函数可以等效表示
In [103]: roller.apply(lambda x:x.mean())
Out[103]: 
0    NaN
1    NaN
2    2.0
3    3.0
4    4.0
dtype: float64
  1. shift, diff, pct_change 是一组类滑窗函数
  • 公共参数为 periods=n ,默认为1
  • shift:表示取向前第 n 个元素的值
  • diff:与向前第 n 个元素做差(与 Numpy 中不同,后者表示 n 阶差分)
  • pct_change:与向前第 n 个元素相比计算增长率
  • 这里的 n 可以为负,表示反方向的类似操作
In [104]: s = pd.Series([1,3,6,10,15])

In [105]: s.shift(2)
Out[105]: 
0    NaN
1    NaN
2    1.0
3    3.0
4    6.0
dtype: float64

In [106]: s.diff(3)
Out[106]: 
0     NaN
1     NaN
2     NaN
3     9.0
4    12.0
dtype: float64

In [107]: s.pct_change() #若不填充数字,默认为1
Out[107]: 
0         NaN
1    2.000000
2    1.000000
3    0.666667
4    0.500000
dtype: float64

In [108]: s.shift(-1)
Out[108]: 
0     3.0
1     6.0
2    10.0
3    15.0
4     NaN
dtype: float64

In [109]: s.diff(-2)
Out[109]: 
0   -5.0
1   -7.0
2   -9.0
3    NaN
4    NaN
dtype: float64
  • 将其视作类滑窗函数的原因是,它们的功能可以用窗口大小为 n+1rolling 方法等价代替
In [110]: s.rolling(3).apply(lambda x:list(x)[0]) # s.shift(2)
Out[110]: 
0    NaN
1    NaN
2    1.0
3    3.0
4    6.0
dtype: float64

In [111]: s.rolling(4).apply(lambda x:list(x)[-1]-list(x)[0]) # s.diff(3)
Out[111]: 
0     NaN
1     NaN
2     NaN
3     9.0
4    12.0
dtype: float64

In [112]: def my_pct(x):
   .....:     L = list(x)
   .....:     return L[-1]/L[0]-1
   .....: 

In [113]: s.rolling(2).apply(my_pct) # s.pct_change()
Out[113]: 
0         NaN
1    2.000000
2    1.000000
3    0.666667
4    0.500000
dtype: float64
  • 实现向后的滑窗操作,例如对1,2,3设定向后窗口为2的 sum 操作,结果为3,5,NaN
In [114]: s = pd.Series([1,2,3])
		  roller = s.rolling(window = 2)

In [115]: s = s + s.shift(-1)
Out[115]: 
0    3.0
1    5.0
2    NaN
dtype: float64

2.4.2 扩张窗口

  1. 扩张窗口又称累计窗口,可以理解为一个动态长度的窗口
  • 窗口的大小就是从序列开始处到具体操作的对应位置,其使用的聚合函数会作用于这些逐步扩张的窗口上
  • 具体地说,设序列为a1, a2, a3, a4,则其每个位置对应的窗口即[a1]、[a1, a2]、[a1, a2, a3]、[a1, a2, a3, a4]
In [114]: s = pd.Series([1, 3, 6, 10])

In [115]: s.expanding().mean()
Out[115]: 
0    1.000000
1    2.000000
2    3.333333
3    5.000000
dtype: float64
  1. cummax, cumsum, cumprod 函数是典型的类扩张窗口函数
方法名函数功能
cumsum()依次给出前1、2、… 、n个数的和
cumprod()依次给出前1、2、… 、n个数的积
cummax()依次给出前1、2、… 、n个数的最大值
cummin()依次给出前1、2、… 、n个数的最小值
In [116]: s = pd.Series([1, 3, 6, 10])

In [117]: s.expanding().max() #cummax
Out[117]: 
0     1.0
1     3.0
2     6.0
3    10.0
dtype: float64
    
In [118]: s.expanding().min() #cumsum
Out[118]: 
0    1.0
1    1.0
2    1.0
3    1.0
dtype: float64

In [119]: s.expanding().agg(lambda x:x.prod()) #cumprod
Out[119]: 
0      1.0
1      3.0
2     18.0
3    180.0
dtype: float64

注:本文整理内容来自datawhale社区(《Joyful Pandas》)和gitmodel开源课程,并少量补充查找的其他资料。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值