前言:
目前较多的图像数据集都是由视频划分出来的,然而这样划分出来的文件包含了大量的冗余图像。全部用于训练将会增加不必要的训练时间。
╮(╯▽╰)╭
为此写了一个拆分数据集代码,主要实现就是通过间隔采样,将原来20帧的图像,每间隔5帧(可以自定义)进行选取,从而减少冗余图像的数量。
代码:
import glob
import shutil
import os
import random
from PIL import Image
def init():
count = 0
txtList = []
# 注意修改提取帧数,目前是25帧选取一张
frame = 25
# 按比例选取
for image_path in glob.glob(r'E:\project\dataset\UA-DETRAC\images\train/*.jpg'):
count = count