针对数据集包含大量冗余图像问题,提供一个按照帧数进行拆分数据集的代码【可自定义X帧】

前言:

目前较多的图像数据集都是由视频划分出来的,然而这样划分出来的文件包含了大量的冗余图像。全部用于训练将会增加不必要的训练时间。

╮(╯▽╰)╭

为此写了一个拆分数据集代码,主要实现就是通过间隔采样,将原来20帧的图像,每间隔5帧(可以自定义)进行选取,从而减少冗余图像的数量。

代码:

import glob
import shutil
import os
import random

from PIL import Image

def init():
    count = 0
    txtList = []
    # 注意修改提取帧数,目前是25帧选取一张
    frame = 25
    # 按比例选取 
     for image_path in glob.glob(r'E:\project\dataset\UA-DETRAC\images\train/*.jpg'):
         count = count 
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值