在主节点jps查看进程
start-all.sh启动能够开启ResourceManager
Jps
97505 Jps
96960 NameNode
30195 Application
97246 ResourceManager
Windows-java使用hadoop配置
下载Hadoop到windows,设置环境变量为hadoop目录-bin和-sbin目录
下载hadoop-common-bin替换bin
winutils.exe和hadoop.dll
修改tpotspark工程中resource的mongoConfig
Tpotspark 工程install后打jar包上传到hadoop线上目录
打包遇到jre不匹配问题:Eclipce的jre改成jdk下的jre
打包命令mvn -Dmaven.test.skip=true assembly:assembly
上传jar包:
spark-submit --master yarn --class com.tlbcc.spark.App hdfs://master:9000/spark/sparktrain-1.0.jar hdfs://master:9000/flume/suricata/19-02-11/2019-02-11.1549877608019 suricata
spark-submit 提交任务及参数说明:
https://www.cnblogs.com/weiweifeng/p/8073553.html
spark-submit 可以提交任务到 spark 集群执行,也可以提交到 hadoop 的 yarn 集群执行
搭建spark
Hadoop(十)spark环境搭建:https://blog.csdn.net/mingyunxiaohai/article/details/80642907
Hadoop2.7.3+Spark2.1.0 完全分布式环境 搭建全过程 :
https://www.cnblogs.com/purstar/p/6293605.html
https://www.cnblogs.com/tovin/p/3820979.html
不知道hadoop版本会不会对spark版本有影响,试spark2.1.0
2.Scala2.12.2环境搭建:
在集群所有节点下载并解压spark的安装包: su hdp cd /home/hdp wget http://d3kbcqa49mib13.cloudfront.net/spark-1.0.0-bin-hadoop2.tgz sudo mv /home/hdp/spark-1.0.0-bin-hadoop2.tgz /usr/local/ cd /usr/local/ sudo tar zxvf spark-1.0.0-bin-hadoop2.tgz sudo ln -s spark-1.0.0-bin-hadoop2 spark sudo chown -R hdp:hdp spark-1.0.0-bin-hadoop2 sudo rm -rf spark-1.0.0-bin-hadoop2.tgz #执行后spark: broken symbolic link to spark-2.1.0-bin-hadoop2.7
|
执行 wget http://d3kbcqa49mib13.cloudfront.net/spark-2.1.0-bin-hadoop2.7.tgz sudo tar zxvf spark-2.1.0-bin-hadoop2.7.tgz sudo ln -s spark-2.1.0-bin-hadoop2.7 spark user@Hadoop1Server:~/spark$ sudo chown -R user:user spark-2.1.0-bin-hadoop2.7
|
Spark部署
spark standalone
以node01为master节点,node02、node03为slave节点安装为例说明:
1、修改集群所有节点spark环境配置文件
cd /usr/local/spark/conf/
mv spark-env.sh.template spark-env.sh
vim spark-env.sh 添加如下内容:
上面参数可以根据机器实际资源情况进行设置其中:
SPARK_WORKER_CORES表示每个Worker进程使用core数目
SPARK_WORKER_MEMORY表示每个Worker进程使用内存
SPARK_WORKER_INSTANCES表示每台机器Worker数目
执行:
cd spark/conf/ vim spark-env.sh |
export SPARK_MASTER_IP=10.2.68.104 export SPARK_WORKER_CORES=1 export SPARK_WORKER_MEMORY=500m export SPARK_WORKER_INSTANCES=1 |
2、启动集群
/usr/local/spark/sbin/start-all.sh
执行:user@Hadoop1Server:~/spark/spark$ sbin/start-all.sh |
报错:localhost: JAVA_HOME is not set
解决:在spark-config.sh里加上
export JAVA_HOME=/path/to/java
执行:
user@Hadoop1Server:~/spark/spark/sbin$ vim spark-config.sh export JAVA_HOME=/home/user/jdk1.8.0_171 |
报错:
user@Hadoop1Server:~/spark/spark$ sbin/start-all.sh org.apache.spark.deploy.master.Master running as process 121242. Stop it first. localhost: starting org.apache.spark.deploy.worker.Worker, logging to /home/user/spark/spark/logs/spark-user-org.apache.spark.deploy.worker.Worker-1-Hadoop1Server.out |
解决:
sbin/stop-all.sh
集群web ui
http://10.2.68.104:8080/查看集群管理页面
spark on yarn模式
SparkOnYarn专题:https://blog.csdn.net/qq_21439395/article/details/80678372
Spark On Yarn安装使用:https://blog.csdn.net/lbship/article/details/82854524
搭建yarn
Web查看yarn:8088端口
修改配置文件:yarn-site.xml
位置:user@Hadoop1Server:~/hadoop/etc/hadoop |
启动yarn集群:(注:该命令应该在resourcemanager所在的机器上执行)
# start-yarn.sh
停止:# stop-yarn.sh
验证:用jps检查yarn的进程,用web浏览器查看yarn的web控制台
启动完成后,可以在windows上用浏览器访问resourcemanager的web端口:
http://hdp-01:8088
yarn集群的补充配置:
补充配置一:
yarn默认情况下,只根据内存调度资源,所以sparkon yarn运行的时候,即使通过--executor-cores指定vcore个数为N,但是在yarn的资源管理页面上看到使用的vcore个数还是1. 相关配置在capacity-scheduler.xml 文件:
user@Hadoop1Server:~/hadoop/etc/hadoop$ vim capacity-scheduler.xml |
<property> <name>yarn.scheduler.capacity.resource-calculator</name> <!--<value>org.apache.hadoop.yarn.util.resource.DefaultResourceCalculator</value> --> <value>org.apache.hadoop.yarn.util.resource.DominantResourceCalculator</value> </property> |
补充配置二:
修改所有yarn节点的yarn-site.xml,在该文件中添加如下配置
如果不配置这两个选项,在spark-on-yarn的client模式下,可能会报错,错误如下:
user@Hadoop1Server:~/hadoop/etc/hadoop$ vim yarn-site.xml |
<property> <name>yarn.nodemanager.pmem-check-enabled</name> <value>false</value> </property> <property> <name>yarn.nodemanager.vmem-check-enabled</name> <value>false</value> </property>
|
参数说明:
yarn.nodemanager.pmem-check-enabled
是否启动一个线程检查每个任务正使用的物理内存量,如果任务超出分配值,则直接将其杀掉,默认是true。
yarn.nodemanager.vmem-check-enabled
是否启动一个线程检查每个任务正使用的虚拟内存量,如果任务超出分配值,则直接将其杀掉,默认是true。
配置修改完成之后,把配置文件分发到各台节点上:
# cd /root/apps/hadoop/etc/hadoop [root@hdp-01 hadoop]# for i in 2 3 ;do scp capacity-scheduler.xml yarn-site.xml hdp-0$i:`pwd`;done |
执行:
user@Hadoop1Server:~$ scp ~/hadoop/etc/hadoop/yarn-site.xml user@Hadoop3Server:~/hadoop/etc/hadoop/yarn-site.xml |
user@Hadoop1Server:~$ scp ~/hadoop/etc/hadoop/yarn-site.xml user@Hadoop2Server:~/hadoop/etc/hadoop/yarn-site.xml |
scp ~/hadoop/etc/hadoop/capacity-scheduler.xml user@Hadoop2Server:~/hadoop/etc/hadoop/capacity-scheduler.xml |
scp ~/hadoop/etc/hadoop/capacity-scheduler.xml user@Hadoop3Server:~/hadoop/etc/hadoop/capacity-scheduler.xml |
Spark
spark-env.sh配置:https://blog.csdn.net/weixin_42186022/article/details/84942998
yarn是hadoop中的一个组件,是一个统一的资源调度平台。
spark on yarn,就是把spark任务提交到yarn 集群上运行。
那么提交spark任务的地方,就是客户端。所以客户端一台即可。但需要保证客户端可以正常连接到hdfs集群和yarn集群。
spark配置:官方文档http://spark.apache.org/docs/latest/running-on-yarn.html
下载spark安装包,上传并解压到/root/apps目录下。
修改spark的配置文件,只需要修改conf目录下的spark-env.sh 配置文件即可。
在spark-env.sh中配置
export JAVA_HOME=/usr/local/jdk1.8.0_131
export HADOOP_CONF_DIR=/root/apps/hadoop/etc/hadoop
执行:
export JAVA_HOME=/home/user/jdk1.8.0_171 export HADOOP_HOME=/home/user/hadoop/etc/hadoop |
可以使用HADOOP_CONF_DIR或者YARN_CONF_DIR
提交spark任务的地方,就是客户端,所以配置一台机器即可
启动hdfs:start-dfs.sh
启动yarn: start-yarn.sh
如果用stop-all.sh会显示:
This script is Deprecated. Instead use stop-dfs.sh and stop-yarn.sh |
Client Driver部署:
1、下载spark、hadoop安装包
参照系统环境配置部分进行设置
2、修改配置文件
hadoop配置文件使用与集群一致的文件
cd /usr/local/spark
vim conf/spark-env.sh添加内容
3、spark测试程序
/usr/local/spark/bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn-cluster /usr/local/spark/lib/spark-examples-1.0.0-hadoop2.2.0.jar
测试spark-shell
spark-shell 命令使用:https://blog.csdn.net/wawa8899/article/details/81016029
1. spark-shell 使用帮助[hadoop@hadoop01 ~]$ cd app/spark-2.2.0-bin-2.6.0-cdh5.7.0/bin
[hadoop@hadoop01 bin]$ ./spark-shell --help
Usage: ./bin/spark-shell [options]
spark-shell 底层也是调用spark-submit进行作业的提交的(源码查看: $SPARK_HOME/bin/spark-shell)
其他的诸如spark-sql、sparkR等底层也都是由spark-submit来进行作业提交的。
执行:
user@Hadoop1Server:~/spark/spark/bin$ ./spark-shell |
spark-submit
spark-submit 提交任务及参数说明https://www.cnblogs.com/weiweifeng/p/8073553.html
Spark-submit提交任务到集群:https://blog.csdn.net/hellozhxy/article/details/80483376
spark-submit --master yarn --class com.tlbcc.spark.App hdfs://master:9000/spark/sparktrain-1.0.jar hdfs://master:9000/flume/suricata/19-02-11/2019-02-11.1549877608019 suricata |
启动hdfs,创建spark目录,上传jar包
hdfs dfs -put /home/user/spark/sparktrain/sparktrain-1.0.jar /spark |
修改命令中的suricata目录为已存在的
执行:
|
首先启动集群,然后客户端来到spark-submit目录:/app/hadoop/spark131/bin
执行:
user@Hadoop1Server:~$ cd spark/spark/bin/ |
user@Hadoop1Server:~/spark/spark/bin$./spark-submit --master yarn --class com.tlbcc.spark.App hdfs://master:9000/spark/sparktrain-1.0.jar hdfs://master:9000/flume/suricata/19-03-08/2019-03-08.1552051184606 suricata |
报错:
Exception in thread "main" java.lang.Exception: When running with master 'yarn' either HADOOP_CONF_DIR or YARN_CONF_DIR must be set in the environment. at org.apache.spark.deploy.SparkSubmitArguments.validateSubmitArguments(SparkSubmitArguments.scala:256) at org.apache.spark.deploy.SparkSubmitArguments.validateArguments(SparkSubmitArguments.scala:233) at org.apache.spark.deploy.SparkSubmitArguments.<init>(SparkSubmitArguments.scala:110) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:119) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) |
解决:https://blog.csdn.net/strongyoung88/article/details/52201622
解决方法:
编辑$SPARK_HOME/conf/spark-env.sh文件
加入以下行:
HADOOP_CONF_DIR=/home/hadoop/hadoop-2.4.0/etc/hadoop/ |
执行:
export HADOOP_CONF_DIR=/home/user/hadoop/etc/hadoop/ |
报错:
Warning: Skip remote jar hdfs://master:9000/spark/sparktrain-1.0.jar. java.lang.ClassNotFoundException: com.tlbcc.spark.App at java.net.URLClassLoader.findClass(URLClassLoader.java:381) at java.lang.ClassLoader.loadClass(ClassLoader.java:424) at java.lang.ClassLoader.loadClass(ClassLoader.java:357) at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:348) at org.apache.spark.util.Utils$.classForName(Utils.scala:229) at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:695) at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:187) at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:212) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:126) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala) |
解决:
在hosts中添加master的ip能ping通
手动执行jar包
user@Hadoop1Server:~/spark/sparktrain$ java -jar sparktrain-1.0.jar hdfs://master:9000/flume/suricata/19-03-08/2019-03-08.1552051184606 suricata |
报错:
Exception in thread "main" java.lang.ExceptionInInitializerError at com.tlbcc.spark.App.main(App.java:38) Caused by: java.lang.NullPointerException at com.tlbcc.spark.SuricataHandler.<clinit>(SuricataHandler.java:26) ... 1 more |
尝试建立本地.json文件测试
cd ~/spark/sparktrain user@Hadoop1Server:~/spark/sparktrain$ java -jar sparktrain-1.0.jar /home/user/spark/sparktrain/eve.json suricata |
没有区别,尝试在eclipse运行:
报错:
Exception in monitor thread while connecting to server 10.2.192.238:27017 com.mongodb.MongoSocketOpenException: Exception opening socket at com.mongodb.internal.connection.SocketChannelStream.open(SocketChannelStream.java:60) at com.mongodb.internal.connection.InternalStreamConnection.open(InternalStreamConnection.java:126) at com.mongodb.internal.connection.DefaultServerMonitor$ServerMonitorRunnable.run(DefaultServerMonitor.java:117) at java.lang.Thread.run(Thread.java:748) Caused by: java.net.ConnectException: Connection refused: no further information |
开启mongodb,eclipse不报错,尝试在windows命令行运行
E:\studyMaterial\学习\其他\活动项目\大数据工作室\Xmanager\spark\本地>java -jar sparktrain-1.0.jar E:\studyMaterial\work\spark\tpotsprak\eve.json suricata |
无法执行
可能是spark没有获取到hadoop上的jar包,尝试获取,能够获取
转换成root用户,相同报错
java.lang.ClassNotFoundException
在spark的安装配置时,我们在SPARK_HOME/conf/spark-defaults.conf文件中配置了如下的参数,spark on yarn模式,默认情况下会读取spark本地的jar包(再jars目录下)分配到yarn的containers中
spark.yarn.jars=hdfs://c1-psc1-VB:9000/user/bd/spark/sparkjar/*` |
参考stackoverflow.:https://stackoverflow.com/questions/24206536/spark-java-appilcation-java-lang-classnotfoundexception
You need to deliver the jar with your job to the workers. To do that, have maven build a jar and add that jar to the context: conf.setJars(new String[]{"path/to/jar/Sample.jar"}); [*] |
You must include your jar in the worker's classpath. You can do this in two ways: •Using the SparkContext method addJar (you can review the documentation in this page http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.SparkContext) •Adding the jar in the lib directory in your spark distribution. The first one is the recommended method. |
This can also happen if you do not specify the full package name when using spark-submit command line. If your main method for the application is in test.spark.SimpleApp then the command line needs to look something like this: 提交命令行时未指定完整的包名称, 也会发生这种情况。如果应用程序的主要方法位于 test.spark.SimpleApp 则命令行需要如下所示: ./bin/spark-submit --class "test.spark.SimpleApp" --master local[2] /path_to_project/target/spark_testing-1.0-SNAPSHOT.jar
Adding just --class "SimpleApp" will fail with ClassNotFoundException. |
参考:
https://stackoverflow.com/questions/23408118/apache-spark-java-lang-classnotfoundexception
https://stackoverflow.com/questions/29511594/java-lang-classnotfoundexception-when-i-use-spark-submit-with-a-new-class-name
命令应该没错,还有一种可能就是jar打包有问题
目前,建议先拉一下最新代码
修改ip重新打一下包
resource中 host=10.2.192.238 |
这次代码已经很全了,除了conpot暂时没法用,其他的没问题了
然后代码想本地执行的话:把handler类中的master("local[2]")取消注释一下,每个handler里面有两个
打包完放到hdfs后用这个执行测一下,内容改成自己的
spark-submit --master yarn --class com.tlbcc.spark.App hdfs://master:9000/spark/sparktrain-1.0.jar hdfs://master:9000/flume/suricata/19-02-11/2019-02-11.1549877608019 suricata |
在线执行
上传 hdfs dfs -put /home/user/spark/sparktrain/sparktrain-1.0.jar /spark 删除 hdfs dfs -rm -r /spark/sparktrain-1.0.jar 提交 user@Hadoop1Server:~$ cd home/user/spark/spark/bin/ user@Hadoop1Server:~/spark/spark/bin$./spark-submit --master yarn --class com.tlbcc.spark.App hdfs://master:9000/spark/sparktrain-1.0.jar hdfs://master:9000/flume/suricata/19-03-08/2019-03-08.1552051184606 suricata |
提交命令行时未指定完整的包名称, 也会发生这种情况。如果应用程序的主要方法位于 test.spark.SimpleApp 则命令行需要如下所示:
./bin/spark-submit --class "test.spark.SimpleApp" --master local[2] /path_to_project/target/spark_testing-1.0-SNAPSHOT.jar
本地执行:
cd ~/spark/sparktrain user@Hadoop1Server:~/spark/sparktrain$ java -jar sparktrain-1.0.jar hdfs://master:9000/flume/suricata/19-03-08/2019-03-08.1552051184606 suricata |
成功: user@Hadoop1Server:~/spark/spark/bin$./spark-submit --master yarn --class com.tlbcc.spark.App ~/spark/sparktrain/sparktrain-1.0.jar hdfs://master:9000/flume/suricata/19-03-08/2019-03-08.1552051184606 suricata |
显示:
19/04/29 14:58:37 INFO driver.connection: Opened connection [connectionId{localValue:3, serverValue:3}] to 10.2.192.238:27017 19/04/29 14:58:37 INFO driver.cluster: Monitor thread successfully connected to server with description ServerDescription{address=10.2.192.238:27017, type=STANDALONE, state=CONNECTED, ok=true, version=ServerVersion{versionList=[3, 4, 0]}, minWireVersion=0, maxWireVersion=5, maxDocumentSize=16777216, logicalSessionTimeoutMinutes=null, roundTripTimeNanos=1678182} 19/04/29 14:58:37 INFO driver.connection: Opened connection [connectionId{localValue:4, serverValue:4}] to 10.2.192.238:27017 19/04/29 14:58:37 INFO spark.App: 任务执行完毕. 19/04/29 14:58:37 INFO spark.SparkContext: Invoking stop() from shutdown hook 19/04/29 14:58:37 INFO server.ServerConnector: Stopped ServerConnector@9f46d94{HTTP/1.1}{0.0.0.0:4040} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@d78795{/stages/stage/kill,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@46074492{/jobs/job/kill,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@64da2a7{/api,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@c9413d8{/,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@32fe9d0a{/static,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@37eeec90{/executors/threadDump/json,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@724f138e{/executors/threadDump,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@cf65451{/executors/json,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@f415a95{/executors,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@114a85c2{/environment/json,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@12cd9150{/environment,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@47289387{/storage/rdd/json,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@1950e8a6{/storage/rdd,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@35d6ca49{/storage/json,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@56e07a08{/storage,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@5990e6c5{/stages/pool/json,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@4a9cc6cb{/stages/pool,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@142eef62{/stages/stage/json,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@517bd097{/stages/stage,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@50687efb{/stages/json,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@66971f6b{/stages,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@3bffddff{/jobs/job/json,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@1601e47{/jobs/job,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@66ea1466{/jobs/json,null,UNAVAILABLE} 19/04/29 14:58:37 INFO handler.ContextHandler: Stopped o.s.j.s.ServletContextHandler@5471388b{/jobs,null,UNAVAILABLE} 19/04/29 14:58:37 INFO ui.SparkUI: Stopped Spark web UI at http://10.2.68.104:4040 19/04/29 14:58:37 INFO spark.MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped! 19/04/29 14:58:37 INFO memory.MemoryStore: MemoryStore cleared 19/04/29 14:58:37 INFO storage.BlockManager: BlockManager stopped 19/04/29 14:58:37 INFO storage.BlockManagerMaster: BlockManagerMaster stopped 19/04/29 14:58:37 INFO scheduler.OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped! 19/04/29 14:58:37 INFO spark.SparkContext: Successfully stopped SparkContext 19/04/29 14:58:37 INFO util.ShutdownHookManager: Shutdown hook called 19/04/29 14:58:37 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-2280070d-9ffc-4526-a291-f8fc42c03d30 |
Jar包本地可以运行,hadoop上无法运行
启动spark
start-all.sh |
user@Hadoop1Server:~$ ~/spark/spark/sbin/start-all.sh |