# 微信聊天记录导出与自定义处理:利用LangChain构建高效聊天加载器
## 引言
对于许多用户来说,从微信中导出个人聊天记录一直以来是一项挑战。当你需要这些信息用于模型微调或作为几次示例输入时,手动导出变得更加重要。本篇文章将向你展示如何创建一个高效的微信聊天加载器,以便从复制粘贴的聊天记录中生成LangChain消息。
## 主要内容
### 1. 创建消息转储
首先,我们需要从微信桌面应用程序中打开聊天界面,并通过鼠标拖拽或右键点击选择最多100条消息。然后使用`CMD/Ctrl+C`复制这些信息,并粘贴到本地计算机上的一个`.txt`文件中。以下是这种格式的示例。
```plaintext
女朋友 2023/09/16 2:51 PM
天气有点凉
男朋友 2023/09/16 2:51 PM
珍簟凉风著,瑶琴寄恨生。嵇君懒书札,底物慰秋情。
女朋友 2023/09/16 3:06 PM
忙什么呢
男朋友 2023/09/16 3:06 PM
今天只干成了一件像样的事
那就是想你
女朋友 2023/09/16 3:06 PM
[动画表情]
2. 定义聊天加载器
接下来,我们将定义一个简单的聊天加载器,解析粘贴的文本消息并将其转换为LangChain支持的消息对象。
import logging
import re
from typing import Iterator, List
from langchain_community.chat_loaders import base as chat_loaders
from langchain_core.messages import BaseMessage, HumanMessage
logger = logging.getLogger()
class WeChatChatLoader(chat_loaders.BaseChatLoader):
def __init__(self, path: str):
self.path = path
self._message_line_regex = re.compile(
r"(?P<sender>.+?) (?P<timestamp>\d{4}/\d{2}/\d{2} \d{1,2}:\d{2} (?:AM|PM))",
)
def _append_message_to_results(self, results: List, current_sender: str, current_timestamp: str, current_content: List[str]):
content = "\n".join(current_content).strip()
if not re.match(r"\[.*\]", content):
results.append(
HumanMessage(
content=content,
additional_kwargs={"sender": current_sender, "events": [{"message_time": current_timestamp}]},
)
)
return results
def _load_single_chat_session_from_txt(self, file_path: str) -> chat_loaders.ChatSession:
with open(file_path, "r", encoding="utf-8") as file:
lines = file.readlines()
results: List[BaseMessage] = []
current_sender = None
current_timestamp = None
current_content = []
for line in lines:
if re.match(self._message_line_regex, line):
if current_sender and current_content:
results = self._append_message_to_results(results, current_sender, current_timestamp, current_content)
current_sender, current_timestamp = re.match(self._message_line_regex, line).groups()
current_content = []
else:
current_content.append(line.strip())
if current_sender and current_content:
results = self._append_message_to_results(results, current_sender, current_timestamp, current_content)
return chat_loaders.ChatSession(messages=results)
def lazy_load(self) -> Iterator[chat_loaders.ChatSession]:
yield self._load_single_chat_session_from_txt(self.path)
3. 创建加载器并加载消息
通过指向我们之前创建的.txt
文件,初始化加载器并加载消息。
loader = WeChatChatLoader(path="./wechat_chats.txt")
from typing import List
from langchain_community.chat_loaders.utils import map_ai_messages, merge_chat_runs
from langchain_core.chat_sessions import ChatSession
raw_messages = loader.lazy_load()
merged_messages = merge_chat_runs(raw_messages)
messages: List[ChatSession] = list(map_ai_messages(merged_messages, sender="男朋友"))
4. 常见问题和解决方案
- 格式问题:确保文本文件的格式严格遵循复制内容的结构,否则加载可能失败。
- API访问限制:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高访问稳定性。
总结与进一步学习资源
通过以上步骤,我们成功创建了一个微信聊天记录加载器,并将其转换为LangChain消息对象。了解更多关于LangChain的功能,可以访问LangChain官方文档。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---