TOJ 2544


题目连接;

http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=2544


题目类型:

数论 - 扩展欧几里得


数据结构:


思路分析:


抽象出公式

( x + k * z ) % L = y

L = 65535 ( 整数的最大值 超过最大值则变为0 )


依旧运用扩展欧几里得的方法

对一次同余方程

A + C * X  = B ( mod M ) 求解


证明:


源代码:

#include <iostream>
#include <stdio.h>

using namespace std;

typedef __int64 int64;

int64 _extend_gcd( int64 a, int64 b, int64 *x, int64 *y ) 
{
	int64 x0,x1,x2,y0,y1,y2;
	int64 r0,r1,r2,q;
	if((a==0)&&(b==0)) { *x=0;*y=0; return -1; }
	if((a==0)&&(b!=0)) { *x=0;*y=1; return b; }
	if((a!=0)&&(b==0)) { *x=1;*y=0; return a; }
	if((a!=0)&&(b!=0))
	{
		x0=0;x1=1;r0=a; y0=1;r1=b; r2=r0%r1;y1=0-r0/r1;x2=1;y2=y1;
		if(r2==0)  { x=0; *y=1; return r1; }
		while((r1%r2)!=0)
		{
			r0=r1;r1=r2; q=r0/r1;
			x2=x0-x1*q; y2=y0-y1*q;
			x0=x1;x1=x2; y0=y1;y1=y2;
			r2=r0%r1;
		}
		*x=x2; *y=y2;
		return r2;
	}
}

int main()
{
	int64 x, y, m, n, l;
	int64 a, b, c, k;
	
	while( scanf( "%I64d%I64d%I64d%I64d", &a, &b, &c, &k ), a + b + c + k )
	{
		int64 tmp = c;
		
		c = b - a;
		a = tmp;
		b = (int64)1 << k;
		
		int64 rlt = _extend_gcd( a, b, & x, & y );
		
		if( c % rlt != 0 )
		{
			puts( "FOREVER" );
		}
		else
		{
			int64 ret = x * c / rlt,
				  re2 = b / rlt;
	  		
	  		ret = ret % re2 + re2;
	  		
	  		printf( "%I64d\n", ret % re2 );
		}
	}
	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值