TOJ 1981


题目连接:

http://acm.tzc.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=1981


题目类型:

数论 - 欧拉函数


数据结构:


思路分析:

连接原点的线,

我们需要知道其方程 y = k * x;

相同的 k 代表在同一直线

则:

y / x = k;

所以说, 需要求出 gcd ( x, y ) = 1的数量 ( 不同 k 的数量 )


需要引用欧拉函数 来求得 小于 N 且 与N 互质的数的个数


证明:


源代码:

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<iostream>
#include<algorithm>
using namespace std;

/***********************************
 欧拉函数
 
 功能: 求不超过 n 且与 n 互素的正整数的个数 

***********************************/

int _eulerf( int m )
{  
	int i,s = 1;
	  
	for( i = 2; i * i <= m; i ++ )  
	{
		if( m % i == 0 )  
		{  
			m /= i;  
			s *= i - 1;
			  
			while( m % i == 0 )  
			{
			    m /= i;  
			    s *= i;  
			}  
		}  
	}
	
	if( m > 1 )
	{ 
		s *= m - 1;
	}
	
	return s;  
}

int main()
{
	int i, t, c = 1, n;
	
	scanf( "%d", &t );
	
	while( t -- )
	{
		scanf( "%d", &n );
		
		int snt = 0;
		
		for( i = 2; i <= n; i ++ )
		{
			snt += 	_eulerf( i );
		}
		
		printf( "%d %d %d\n", c ++, n, snt * 2 + 3 );
	}
	
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值