基本简介
Simoncelli和Freeman提出了方向可控金字塔理论。方向可控金字塔是一种重要的图像处理工具,通过方向可控金字塔的线性分解,一个图像被分解成一系列不同尺度、不同方向的图像子带。变换的基函数是依据想要的顺序的高阶导。
方向可控金字塔变换是通过递归的卷积和抽样操作完成,相应的逆变换矩阵是前向变换矩阵的转置。方向可控金字塔的优点在于其具有平移不变性和旋转不变性。
依据原理
金字塔分解和微分求导操作都是线性并且移相不变性。
分解方法
角度分解
如果使用函数的旋转作为基函数,则基函数的方向应0到π之间等间隔分布。可以用函数的k-1阶方向导数来做基函数,方向导数是一种方向滤波器。因此,图像沿任意方向的k一1阶方向导数是k个k-1阶基方向导数的线性组合。
由此获得图像在k个方向上的方向滤波器,完成角度分解部分。
图1为三阶方向可控金字塔的频谱分割示意图,由于是三阶,因此且Bk(w) 有 4个,方向分别为0°,45°,90°和135°。图2为三阶方向可控金字塔的系统结构。H0(w)为高通滤波器,L0(w)和L1(w)为低通滤波器,Bk(w)为方向带通滤波器,0≤k≤3,s0,s1,s2,s3为子带图像。