图像分类
文章平均质量分 96
Voxel_97
这个作者很懒,什么都没留下…
展开
-
图像分类(二)—KNN算法实战之MNIST数据集(附代码)
阐释KNN算法在图像分类中应用的基础和扩展上做得非常详细,清晰地展示了从理论到实际应用的整个过程,包括预处理、数据集的处理以及算法的实现和验证。原创 2024-04-15 23:35:28 · 2482 阅读 · 0 评论 -
图像分类(三)— KNN算法实战之CIFAR10数据集+交叉验证(附代码)
在图像分类任务中,通常使用的是三维彩色图像,这种图像包含了红色、绿色和蓝色三个颜色通道。这些通道结合在一起,能够形成我们所看到的彩色图像。每个通道本质上是二维的,包含了图像在行和列方向上的像素信息。当这些通道被堆叠在一起时,我们就得到了一个三维数组来表示整个彩色图像。通过模型读取并计算图像属于多个预定义的类别的概率。具体来说,图像分类任务就是预测一个给定的图像包含了哪个分类标签(或者说是给出属于一系列不同标签的可能性)。原创 2024-04-18 23:09:05 · 2027 阅读 · 3 评论 -
图像分类(一)—KNN算法概述(附代码)
K—最近邻近算法(K- Nearest Neighbor, KNN)原创 2024-04-14 19:33:07 · 1660 阅读 · 0 评论