解锁线性代数之门:用Python秒解任何线性方程组

本文介绍了如何使用Python结合正则表达式和Sympy库解析线性方程组,包括将方程组转化为增广矩阵、提取系数、计算矩阵秩以判断解的情况,并通过高斯消元法求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

解锁线性代数之门:用Python秒解任何线性方程组

在数学和计算机科学的世界中,解决线性方程组是一个基本而重要的任务。无论是在工程计算、数据分析还是科学研究中,线性方程组都扮演着不可或缺的角色。高斯消元法,以数学家卡尔·弗里德里希·高斯的名字命名,是解决这一问题的经典方法之一。它不仅在理论上具有重要意义,而且在实际应用中也极为高效。本文将带你深入探索高斯消元法的奥秘,从它的数学原理出发,一步步走向其Python实现。

要秒解任何线性方程组,我们首先要把一般形式的线性方程组转变成增广矩阵的形式,这样才方便用计算机程序运算。

img

img

一.把一般形式的线性方程组转变成增广矩阵

1.对于简单的线性方程组,最常见的方法是直接输入。比如说,我们看到题目如图,我们就看着这个图,在Python程序里面输入:

matrix=[[2,1,1,1],[6,2,1,-1],[-2,2,1,7]]

这样不就一下子把题目里的方程组变成标准的增广矩阵了吗?!

但是,如果我们要输入很多线性方程组,不仅自己看着眼花缭乱,还总是要去修改Python本体。

直接输入常量的程序维护性太差了!

2.我自己使用的方法是正则表达式

正则表达式快速入门:https://www.zhengzeshi.com

我一开始这样应用正则表达式:

import re
# 示例字符串
s = "3a - 2b + 7c = 4"
# 正则表达式匹配位于任意英文字母前的数字,但结果不包含这些字母
pattern = r"-?\d*(?=[a-zA-Z])"
# 使用 re.findall 查找所有匹配项
matches = re.findall(pattern, s)
# 输出提取到的数字
print("提取到的数字包括:", numbers)
"""
提取到的数字包括: ['3', '2', '7']
"""

似乎这个程序是能够提取出来方程中的系数的。

但是,-?\d*(?=[a-zA-Z])这个正则表达式只能提取显式系数,而不适用于x+y+z=1这类包含隐式系数的方程,对于存在零系数的方程组,更是会忽略掉零系数!

image

那我们怎么解决隐式系数+1、-1和0的问题呢?

问一下AI怎么说~

在这里插入图片描述
这个Python程序先收集了方程组里一共有几个未知数变量,然后在方程组里面寻找各个变量,进行逻辑判断。

如果没有找到变量,则系数为0。

如果变量前面是空字符串,则系数为1。

如果变量前面是负号字符串,则系数为-1。

import numpy as np
import re

# 示例方程组
equations = ["x+y+z=1", "x+y=0"]

# 步骤1: 收集所有变量名
all_variables = set()
pattern = r"([a-zA-Z]+)"
for eq in equations:
    variables = re.findall(pattern, eq.split('=')[0])
    all_variables.update(variables)
all_variables = sorted(list(all_variables))  # 排序以保持一致性

# 步骤2: 构建方程系数矩阵
coeff_matrix = []
for eq in equations:
    coeff = [0] * len(all_variables)  # 初始化系数为0
    for var in all_variables:
        # 查找变量系数,如果没有找到,则系数为0
        match = re.search(rf"(-?\d*){
     var}", eq)
        if match:
            coeff_val = match.group(1)
            coeff[all_variables.index(var)] = int(coeff_val) if coeff_val not in ['', '-'] else -1 if coeff_val == '-' else 1
    coeff_matrix.append(coeff)

# 步骤3: 构建常数项向量
const_vector = [int(eq.split('=')[1]) for eq in equations]

# 输出结果
print("变量顺序:", all_variables)
print("系数矩阵:", coeff_matrix)
print("常数项向量:", const_vector)

"""
变量顺序: ['x', 'y', 'z']
系数矩阵: [[1, 1, 1], [1, 1, 0]]
常数项向量: [1, 0]
"""

3.对了,我还要给大家推荐一个很好用的专门的数学表达式解析库!——Sympy

安装 SymPy: 如果您还没有安装 SymPy,可以通过 pip 来安装它:

pip install sympy

然后你就能用Sympy解析数学表达式并提取系数了:

from sympy import symbols, Eq, solve

# 定义符号
x = symbols('x')
# 定义方程 ax^2 + bx + c = 0
equation = Eq(2*x**2 + 3*
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值