14、云环境下的安全与灾难恢复策略

云环境下的安全与灾难恢复策略

1. 网络入侵检测系统(NIDS)的局限性

网络入侵检测系统(NIDS)的主动警报有效性有限,其主要好处是防范恶意有效负载。但如果对所有流量进行加密,这种好处就微乎其微。而且,NIDS 的存在会大幅降低服务器性能,还会为基础设施中的所有主机创造单一攻击向量。

2. 主机安全

2.1 主机安全的任务

主机安全涵盖以下任务:
- 预防攻击。
- 尽量减少成功攻击对整个系统的影响。
- 攻击发生时做出响应。

2.2 预防攻击的策略

在现实世界中,预防攻击的最佳方法是假设软件存在安全漏洞。因为主机上运行的每个服务都是一个独特的攻击向量,攻击向量越多,攻击者找到可利用漏洞的可能性就越大。所以,必须尽量减少服务器上运行的软件种类。

2.3 安全补丁的快速部署

假设服务存在漏洞,防止攻击者利用已知漏洞的关键工具是快速部署安全补丁。在传统数据中心,在整个基础设施中部署安全补丁既耗时又有风险。而在云环境中,部署补丁只需三个简单步骤:
1. 用新的安全修复程序修补 AMI。
2. 测试结果。
3. 重新启动虚拟服务器。

使用 enStratus 或 RightScale 等基础设施管理工具至关重要,它能自动部署安全修复程序,减少人工参与、停机时间和人为错误导致的停机可能性。

2.4 系统加固

系统加固应从设置机器映像时开始。找到适合特定服务配置文件的配置后,在创建映像前应进行系统加固。服务器加固是指禁用或删除不必要的服务,消除不重要的

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化训练,到执行分类及结果优化的完整流程,并介绍了精度评价通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置结果后处理环节,充分利用ENVI Modeler进行自动化建模参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值