11、使用 HTML5 API 创建地图应用指南

使用 HTML5 API 创建地图应用指南

1. 调试信息与性能分析

调试信息能让我们了解从应用加载到视图准备好所需的时间。在本地主机上运行时,DNS 和连接查找总是在 0 毫秒内完成,即瞬间完成。而当应用在外部服务器上运行时,这些时间会增加,反映出查找服务器并连接所需的时长。

从相关截图可以看出,页面加载并准备好服务所需的时间并不长。真正耗时的部分是等待应用从反向地理定位获取位置数据,大约需要 1.5 秒,这个时间通常在 1 - 10 秒之间波动,除非找到缓存请求的方法,否则难以减少。

2. 展示静态地图

静态地图是所选位置的图像快照,与交互式地图相比,使用静态地图有诸多优势:
- 无额外开销:它只是一个普通图像,速度快且轻量级。
- 可预渲染和缓存:这意味着对地图提供商的请求减少,可能可以使用更小的数据套餐。
- 完全可控:使用静态地图可以完全掌控地图,而使用第三方服务通常需要向服务方交出部分控制权。

可使用的地图提供商除了 OpenStreetMap 外,还有 Yahoo! Maps、Bing Maps、Google Maps、MapQuest 等。接下来将设置应用连接其中几个服务,以便进行比较和选择。

2.1 配置 endpoints

打开 config.json 文件,在文件的结束括号前添加以下代码(确保在 openstreetmap 后添加逗号):

"google": {
  "name": "google",
  
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值