给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
这里的思路是:每次比较两个数组的中位数,
中位数大的数组删除右半部分,中位数小的数组删除左半部分,
两个数组删除的长度相同,删除的长度为长度短的数组长度的一半;
此操作不会改变两个数组整体的中位数大小
class Solution(object):
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
def get_median(a, b):
if len(a) <= 3 or len(b) <= 3:
b.extend(a)
b.sort()
print(b)
if len(b) % 2 == 0:
return (float(b[len(b)//2-1]) + b[len(b)//2])/2
else:
return b[len(b) // 2]
bm = len(b) // 2
am = len(a) // 2
if b[bm] > a[am]:
minlen = min(len(b), len(a))
print(minlen)
b2 = b[:len(b) - minlen//2+1]
a2 = a[minlen//2-1:]
# print('*',a2,b2)
return get_median(a2,b2)
else:
minlen = min(len(b), len(a))
a2 = a[:len(a) - minlen//2+1]
b2 = b[minlen//2-1:]
# print('@',a2,b2)
return get_median(a2,b2)
return get_median(nums1, nums2)