题目背景
NOIP2016 普及组 T1
题目描述
P 老师需要去商店买 n 支铅笔作为小朋友们参加 NOIP 的礼物。她发现商店一共有 3 种包装的铅笔,不同包装内的铅笔数量有可能不同,价格也有可能不同。为了公平起 见,P 老师决定只买同一种包装的铅笔。
商店不允许将铅笔的包装拆开,因此 P 老师可能需要购买超过 n 支铅笔才够给小朋友们发礼物。
现在 P 老师想知道,在商店每种包装的数量都足够的情况下,要买够至少 n 支铅笔最少需要花费多少钱。
输入格式
第一行包含一个正整数 n,表示需要的铅笔数量。
接下来三行,每行用 2 个正整数描述一种包装的铅笔:其中第 1 个整数表示这种包装内铅笔的数量,第 2 个整数表示这种包装的价格。
保证所有的 7 个数都是不超过 10000 的正整数。
输出格式
1 个整数,表示 P 老师最少需要花费的钱。
输入输出样例
输入 #1
57 2 2 50 30 30 27
输出 #1
54
输入 #2
9998 128 233 128 2333 128 666
输出 #2
18407
输入 #3
9999 101 1111 1 9999 1111 9999
输出 #3
89991
说明/提示
铅笔的三种包装分别是:
- 2 支装,价格为 2;
- 50 支装,价格为 30;
- 30 支装,价格为 27。
P 老师需要购买至少 57 支铅笔。
如果她选择购买第一种包装,那么她需要购买 29 份,共计 2×29=58 支,需要花费的钱为 2×29=58。
实际上,P 老师会选择购买第三种包装,这样需要买 2 份。虽然最后买到的铅笔数量更多了,为 30×2=60 支,但花费却减少为 27×2=54,比第一种少。
对于第二种包装,虽然每支铅笔的价格是最低的,但要够发必须买 2 份,实际的花费达到了 30×2=60,因此 P 老师也不会选择。
所以最后输出的答案是 54。
数据范围
保证所有的 7 个数都是不超过 10000 的正整数。
子任务
子任务会给出部分测试数据的特点。如果你在解决题目中遇到了困难,可以尝试只解决一部分测试数据。
每个测试点的数据规模及特点如下表:
上表中“整倍数”的意义为:若为 K,表示对应数据所需要的铅笔数量 n —定是每种包装铅笔数量的整倍数(这意味着一定可以不用多买铅笔)。
于 2022 年 12 月 23 日新加 Hack 数据三组。
思路
所以我们可以直接模拟买3种包装的情况所需的钱,再通过比较最值来确定最终选择的方案是什么。
比如样例一,我们需要57支笔。
2 支装,价格为 2,所以我们共需要58元;
50 支装,价格为 30,所以我们全选的话需要60元;
30 支装,价格为 27,所以我们需要54元。
所以经过比较,我们发现第三种是最好方案,那么我们模拟的思路也出来了,只要模拟每种所花的钱再比大小输出最小即可。
AC Code
#include<bits/stdc++.h>
using namespace std;
long n,a1,a2,b1,b2,c1,c2,pen1,pen2,pen3,x[3];
int compare(int a1,int a2,int b1,int b2,int c1,int c2)
{
while(pen1<n) { pen1+=a1; x[0]+=a2; }
while(pen2<n) { pen2+=b1; x[1]+=b2; }
while(pen3<n) { pen3+=c1; x[2]+=c2; }
return x[0],x[1],x[2];
}
int main()
{
cin>>n>>a1>>a2>>b1>>b2>>c1>>c2;
compare(a1,a2,b1,b2,c1,c2);
sort(x,x+3);
cout<<x[0];
return 0;
}