单源最短路

问题 A: #119. 单源最短路

时间限制: 1 Sec 内存限制: 256 MB
提交: 15 解决: 4
[ 提交][ 状态][ 讨论版][命题人: 外部导入]

题目描述

给一个 n(1≤n≤2500) n(1 \leq n \leq 2500) n(1n2500) 个点 m(1≤m≤6200) m(1 \leq m\leq 6200 ) m(1m6200) 条边的无向图,求 s s st t t 的最短路。

输入格式

第一行四个由空格隔开的整数 n n nm m ms s st t t
之后的 m m m 行,每行三个正整数 si s_i siti t_i tiwi(1≤wi≤109) w_i(1 \leq w_i \leq 10 ^ 9) wi(1wi109),表示一条从 si s_i siti t_i ti 长度为 wi w_i wi 的边。

输出格式

一个整数表示从 s s st t t 的最短路长度。数据保证至少存在一条道路。

样例
样例输入
7 11 5 4
2 4 2
1 4 3
7 2 2
3 4 3
5 7 5
7 3 3
6 1 1
6 3 4
2 4 3
5 6 3
7 2 1
样例输出
7

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
#define ll long long 


using namespace std;
const int B=62100;
const int D=25100;
const ll Maxn=99999999;


int head[B];
int now=1;
ll dis[D];
bool vis[D];
struct node{
    ll u,v,w,nxt;
}E[B];
queue<int>q;
ll n,m,start,endd;


inline ll read()
{
    ll x=0;char c=getchar();ll f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9')x=x*10+c-'0',c=getchar();
    return x*f;
}


inline void add(int u,int v,int w)
{
    E[now].u=u;
    E[now].v=v;
    E[now].w=w;
    E[now].nxt=head[u];
    head[u]=now++;
}


inline void spfa(int start)
{
    for(int i=1;i<=n;i++)
        dis[i]=Maxn;
    dis[start]=0;
    vis[start]=1;
    q.push(start);
    while(!q.empty())
    {
        int top=q.front();
        q.pop();
        vis[top]=0;
        for(int i=head[top];i!=-1;i=E[i].nxt)
            if(dis[E[i].v]>dis[top]+E[i].w)
            {
                dis[E[i].v]=dis[top]+E[i].w;
                if(!vis[E[i].v])
                {
                    vis[E[i].v]=1;
                    q.push(E[i].v);
                }    
            }
    }
    printf("%lld",dis[endd]);
}


int main()
{
    //freopen("3.in","r",stdin);
    //freopen("3.out","w",stdout);
    n=read();
    m=read();
    start=read();
    endd=read();
    
    for(int i=1;i<=n;i++)
        head[i]=-1;
    for(int i=1;i<=m;i++)
    {
        int u=read();
        int v=read();
        int w=read();
        add(u,v,w);
        add(v,u,w);
    }
    spfa(start);
    return 0;    
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值