机器学习
1.A computer program is said to learn from experience E with respect to some task T and some performance measure P,if its performance on T,as measure by P, improves with experience E.
2.supervised learning
unsupervised learning
3.分类问题还是回归问题
4.obstacle
octave
吴恩达机器学习-第一周
一、 引言(Introduction)
1.1 欢迎
1.2 机器学习是什么?
机器学习:在进行特定编程的情况下,给予计算机学习能力的领域。
一个程序被认为能从经验E中学习解决任务T,达到性能度量值P,当且仅 当,有了经验E后,经过P评判,程序在处理T时的性能有所提升。
1.3 监督学习
教计算机去如何完成任务
垃圾邮件问题,糖尿病,乳腺癌
1.4 无监督学习
让它自己进行学习
新闻事件分类,细分市场,
支持向量机:算法,有特殊的数学技巧,能让计算机处理无线多个特征。
[W,s,v] = svd((repmat(sum(x.*x,1),size(x,1),1).*x)*x’);
二、单变量线性回归(Linear Regression with One Variable)
2.1 模型表示
一种可能的表达方式为:,因为只含有一个特征/输入变量,因此这样的问题叫作单变量线性回归问题。
2.2 代价函数
模型所预测的值与训练集中实际值之间的差距(下图中蓝线所指)就是建模误差(modeling error)。
2.3 代价函数的直观理解I
2.4 代价函数的直观理解II
2.5 梯度下降
2.6 梯度下降的直观理解
2.7 梯度下降的线性回归
2.8 接下来的内容
三、线性代数回顾(Linear Algebra Review)
3.1 矩阵和向量
3.2 加法和标量乘法
3.3 矩阵向量乘法
3.4 矩阵乘法
3.5 矩阵乘法的性质
3.6 逆、转置