TVM简介

TVM

FGPA,CPU, GPU

1.什么是TVM?

是一个支持GPU,CPU,FPGA指令生成的开源编译器框架

2.特点

基于图和算符结构来优化指令生成,最大化硬件执行效率。其中使用了很多方法
来改善硬件执行速度,包括算符融合、数据规划、基于机器学习的优化器等。它
向上对接Tensorflow、Pytorch等深度学习框架,向下兼容GPU、CPU、ARM、
TPU等硬件设备。

3.整体架构

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传
TVM是一个端到端的指令生成器。
整个架构是基于图描述结构,不论是对指令的优化还是指令生成,一个图结构
清晰的描述了数据流方向,操作之间的依赖关系等。

4.主要特点

1、基于GPU、TPU等硬件架构,将张量运算作为一个基本的算符,通过把一个深
度学习网络描述成图结构来抽象出数据计算流程。在这样的图结构基础上,更方便
记忆优化。同时能够有更好的向上向下兼容性,同时支持多种深度学习框架和硬件
架构。
2、巨大的优化搜索空间。在优化图结构方面,其不再局限于通过某一种方式,而是
通过机器学习方法来搜索可能的空间来最大化部署效率。这种方式虽然会导致编译器
较大的计算量,但是更加通用。
TVM提供了一个非常简单的端到端用户接口,通过调用TVM的API可以很方便的进行
硬件部署。比如:

import tvm as t

# 将keras模型输入到TVM,指定部署的硬件GPU,然后进行优化和代码生成。
graph, params = t.fronted.from_keras(keras_model)
target = t.target.cuda()
graph, lib, params = t.compiler.build(graph, target, params)

TVM也提供了Java、C++和python界面供用户统一调用。

5.图结构基本优化

TVM图优化策略:
算符融合:将可以在硬件上用一个算符完成的多个连续运算合并;
常量折叠:将可以预先计算的数据放在编译器中完成,减少硬件计算;
存储规划:预先为中间数据分配存储空间来存储中间值,避免中间数据无法存储在片上而增加片外
存储开销;
数据规划:重新排列数据有利于硬件计算。

6.张量计算

TVM采用Halide思想,通过使用schedule来对张量计算进行等价变换,从中计算出执行效率最高的
schedule结构。整个schedule流程如下:
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

还增加了三种针对GPU和TPU的schedule方式:spicile memory scope,
tensorrization, latency hiding。

并行化计算:

需要考虑两点问题:并行度、数据共享。
TVM提出了memory scope的概念,其将数据计算进行可并行和不可并行分类,对于可以并行计算的,
就可以使用多线程来并行计算,而不可并行,则需要等待被依赖数据计算完成。

存储读写优化

7.自动优化器

一个机器学习模型来寻找最优化的schedule结构。其包含两部分:一部分是基于schedule方式产生
所有可能的计算结构;另外一个是机器学习代驾模型来预测可能性。

8.编译流程

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值