信息学奥赛一本通题目解析:1361:产生数(深搜,队列)

【题目描述】

给出一个整数n(n≤2000)和k个变换规则(k≤15)。规则:

① 1个数字可以变换成另1个数字;

② 规则中,右边的数字不能为零。

例如:n=234,k=2规则为

2 → 5

3 → 6

上面的整数234经过变换后可能产生出的整数为(包括原数)234,534,264,564共4种不同的产生数。

求经过任意次的变换(0次或多次),能产生出多少个不同的整数。仅要求输出不同整数个数。

【输入】

nkx1x2…xny1y2…y

【输出】

格式为一个整数(满足条件的整数个数)。

【输入样例】

234
2
2 5
3 6

【输出样例】

4

【解题思路】

  1. 理解题目要求
    • 给定一个整数 nk 个变换规则,通过这些变换规则可以从 n 生成不同的整数。
    • 求出所有可能生成的不同整数的个数。

解题步骤

步骤 1:将整数拆分为数字数组

问题 1:如何将整数 n 拆分成它的各个位上的数字?

  • 通过将整数按位拆分,可以方便地对每个位上的数字应用变换规则。
步骤 2:构建变换规则

问题 2:如何存储和管理变换规则?

  • 可以使用两个数组 frmto 分别存储每个变换规则的原始数字和目标数字。
步骤 3:广度优先搜索 (BFS)

问题 3:如何使用 BFS 遍历所有可能的数字变换?

  • BFS 可以遍历所有可能的数字变换,确保找到所有不同的结果。
步骤 4:记录和去重

问题 4:如何记录已经访问过的数字,避免重复计算?

  • 使用一个集合 visited 来记录所有已经生成的数字,避免重复计算。

关键点总结

  • 输入和初始化:读取起始数字和变换规则数量,以及具体的变换规则。
  • 数字变换:将数字拆分为各个位上的数字进行变换,并重新组合为整数。
  • 广度优先搜索 (BFS):通过BFS遍历所有可能的数字变换,记录并去重。
  • 输出结果:最终输出通过所有变换规则可以生成的不同整数的数量。

#include <bits/stdc++.h>
using namespace std;

#define K 20  // 最大的变换规则数量

int n, k, cnt, frm[K], to[K], digits[5], digit_cnt;
bool visited[10001];

// 将整数 num 拆分为数字数组 digits
void numToDigits(int num) {
    digit_cnt = 0;
    int temp = num;
    do {
        digits[++digit_cnt] = temp % 10;
        temp /= 10;
    } while (temp > 0);
}

// 将数字数组 digits 组合为整数
int digitsToNum() {
    int num = 0;
    for (int i = digit_cnt; i >= 1; --i) {
        num = num * 10 + digits[i];
    }
    return num;
}

// 广度优先搜索 (BFS) 算法
void bfs() {
    queue<int> q;
    visited[n] = true;
    cnt = 1;
    q.push(n);

    while (!q.empty()) {
        int cur = q.front();
        q.pop();
        numToDigits(cur);

        // 遍历 digits 中的每一位
        for (int i = 1; i <= digit_cnt; ++i) {
            // 遍历每条变换规则
            for (int j = 1; j <= k; ++j) {
                if (digits[i] == frm[j]) {
                    digits[i] = to[j];  // 应用变换规则
                    int new_num = digitsToNum();

                    if (!visited[new_num]) {  // 如果新数字未被访问
                        visited[new_num] = true;
                        cnt++;
                        q.push(new_num);
                    }

                    digits[i] = frm[j];  // 还原
                }
            }
        }
    }
}

int main() {
    cin >> n >> k;  // 读取起始数字和变换规则数量

    // 读取变换规则
    for (int i = 1; i <= k; ++i) {
        cin >> frm[i] >> to[i];
    }

    bfs();  // 执行广度优先搜索
    cout << cnt;  // 输出不同整数的个数

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值