【题目描述】
给出一个整数n(n≤2000)和k个变换规则(k≤15)。规则:
① 1个数字可以变换成另1个数字;
② 规则中,右边的数字不能为零。
例如:n=234,k=2规则为
2 → 5
3 → 6
上面的整数234经过变换后可能产生出的整数为(包括原数)234,534,264,564共4种不同的产生数。
求经过任意次的变换(0次或多次),能产生出多少个不同的整数。仅要求输出不同整数个数。
【输入】
nkx1x2…xny1y2…y
【输出】
格式为一个整数(满足条件的整数个数)。
【输入样例】
234
2
2 5
3 6
【输出样例】
4
【解题思路】
- 理解题目要求:
- 给定一个整数
n
和k
个变换规则,通过这些变换规则可以从n
生成不同的整数。 - 求出所有可能生成的不同整数的个数。
- 给定一个整数
解题步骤
步骤 1:将整数拆分为数字数组
问题 1:如何将整数 n
拆分成它的各个位上的数字?
- 通过将整数按位拆分,可以方便地对每个位上的数字应用变换规则。
步骤 2:构建变换规则
问题 2:如何存储和管理变换规则?
- 可以使用两个数组
frm
和to
分别存储每个变换规则的原始数字和目标数字。
步骤 3:广度优先搜索 (BFS)
问题 3:如何使用 BFS 遍历所有可能的数字变换?
- BFS 可以遍历所有可能的数字变换,确保找到所有不同的结果。
步骤 4:记录和去重
问题 4:如何记录已经访问过的数字,避免重复计算?
- 使用一个集合
visited
来记录所有已经生成的数字,避免重复计算。
关键点总结
- 输入和初始化:读取起始数字和变换规则数量,以及具体的变换规则。
- 数字变换:将数字拆分为各个位上的数字进行变换,并重新组合为整数。
- 广度优先搜索 (BFS):通过BFS遍历所有可能的数字变换,记录并去重。
- 输出结果:最终输出通过所有变换规则可以生成的不同整数的数量。
#include <bits/stdc++.h>
using namespace std;
#define K 20 // 最大的变换规则数量
int n, k, cnt, frm[K], to[K], digits[5], digit_cnt;
bool visited[10001];
// 将整数 num 拆分为数字数组 digits
void numToDigits(int num) {
digit_cnt = 0;
int temp = num;
do {
digits[++digit_cnt] = temp % 10;
temp /= 10;
} while (temp > 0);
}
// 将数字数组 digits 组合为整数
int digitsToNum() {
int num = 0;
for (int i = digit_cnt; i >= 1; --i) {
num = num * 10 + digits[i];
}
return num;
}
// 广度优先搜索 (BFS) 算法
void bfs() {
queue<int> q;
visited[n] = true;
cnt = 1;
q.push(n);
while (!q.empty()) {
int cur = q.front();
q.pop();
numToDigits(cur);
// 遍历 digits 中的每一位
for (int i = 1; i <= digit_cnt; ++i) {
// 遍历每条变换规则
for (int j = 1; j <= k; ++j) {
if (digits[i] == frm[j]) {
digits[i] = to[j]; // 应用变换规则
int new_num = digitsToNum();
if (!visited[new_num]) { // 如果新数字未被访问
visited[new_num] = true;
cnt++;
q.push(new_num);
}
digits[i] = frm[j]; // 还原
}
}
}
}
}
int main() {
cin >> n >> k; // 读取起始数字和变换规则数量
// 读取变换规则
for (int i = 1; i <= k; ++i) {
cin >> frm[i] >> to[i];
}
bfs(); // 执行广度优先搜索
cout << cnt; // 输出不同整数的个数
return 0;
}