LeetCode -- Binary Search Tree Iterator

本文介绍了一种实现二叉搜索树迭代器的方法。该方法通过对二叉搜索树进行中序遍历并将元素存储在队列中来初始化迭代器。通过检查队列是否为空来确定是否有下一个元素,并通过移除队列首元素来获取下一个最小值。
题目描述:


Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the root node of a BST.


Calling next() will return the next smallest number in the BST.


Note: next() and hasNext() should run in average O(1) time and uses O(h) memory, where h is the height of the tree.


就是实现一个搜索二叉树的迭代器。




思路:
初始化时对树中序遍历元素入队列;hasNext:判断队列是否空;Next:拿出队列当前元素。
缺陷:这个做法的缺陷在于如果只拿1个元素,仍然需要对整树遍历一次;可是大多数情况下,使用迭代器的目的显然是从头遍历到尾,因此这个方案是make sense的。


实现代码:


/**
 * Definition for binary tree
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left;
 *     public TreeNode right;
 *     public TreeNode(int x) { val = x; }
 * }
 */


public class BSTIterator {


    private Queue<int> _values ;
    public BSTIterator(TreeNode root) 
	{
       _values = new Queue<int>();
	   Init(root);
    }
	
	private void Init(TreeNode current)
	{
		if(current == null)
		{
			return;
		}
		Init(current.left);
		_values.Enqueue(current.val);
		Init(current.right);
	}


    /** @return whether we have a next smallest number */
    public bool HasNext() {
        return _values.Count > 0;
    }


    /** @return the next smallest number */
    public int Next() {
		var v = _values.Dequeue();
		return v;
    }
}


/**
 * Your BSTIterator will be called like this:
 * BSTIterator i = new BSTIterator(root);
 * while (i.HasNext()) v[f()] = i.Next();
 */


内容概要:本文详细介绍了如何使用Hugging Face Transformers库进行大模型推理,涵盖环境配置、模型下载、缓存管理、离线使用、文本生成、推理pipeline及模型量化技术。重点讲解了使用LLMs进行自回归生成的核心流程,包括token选择策略、生成参数配置(如max_new_tokens、do_sample)、填充方式(左填充的重要性)以及常见陷阱的规避方法。同时深入探讨了多种量化技术(如GPTQ、AWQ、bitsandbytes的4位/8位量化),并通过实例演示了如何加载本地模型、应用聊天模板、结合Flash Attention优化性能,并实现CPU-GPU混合卸载以应对显存不足的问题。; 适合人群:具备Python编程基础和深度学习基础知识,熟悉Transformer架构,从事NLP或大模型相关工作的研究人员、工程师和技术爱好者;尤其适合需要在资源受限环境下部署大模型的开发者。; 使用场景及目标:①掌握Hugging Face Transformers库的核心API,实现大模型的本地加载与高效推理;②理解和避免大模型生成过程中的常见问题(如输出过短、重复生成、填充错误等);③应用量化技术降低大模型内存占用,实现在消费级GPU或CPU上的部署;④构建支持批量处理和多模态任务的推理流水线。; 阅读建议:此资源理论与实践紧密结合,建议读者边阅读边动手实践,复现文中的代码示例,并尝试在不同模型和硬件环境下进行调优。重点关注生成配置、量化参数和设备映射策略,结合具体应用场景灵活调整。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值