❥深度学习框架
记录各种深度学习框架
搬运代码打工人
分享学习
记录日常
展开
-
关于GAN各种改进方法的基于PyTorch框架的实现
实用--------到达链接Table of ContentsInstallationImplementationsAuxiliary Classifier GANAdversarial AutoencoderBEGANBicycleGANBoundary-Seeking GANConditional GANContext-Conditional GANContext Enc...转载 2019-06-13 08:54:36 · 983 阅读 · 0 评论 -
TensorFlow框架--前向传播与后向传播--到神经网络实现过程
一、张量、、计算图、、会话基于TensorFlow的NN:用张量表示数据,用计算图搭建神经网络,,用绘画执行计算图,优化线上的权重(参数),得到模型。张量(tensor):多维数组(列表) 阶:张量的维数scalar vector matrix tensor计算图(Graph):搭建神经网络的计算过程,没有运算 Tensor(“add:0”, shape ...原创 2019-05-22 00:06:02 · 930 阅读 · 0 评论 -
pytorch自定义数据集(附常用的图片定义函数)
转:pytorch自定义数据集转载 2021-03-26 15:14:02 · 129 阅读 · 0 评论 -
PyTorch 自动求导机制
【1】从 tensor【2】到 autograd转载 2021-03-02 15:27:24 · 78 阅读 · 0 评论 -
torchvision.transforms使用参考
torchvision.transforms使用参考转载 2019-06-13 17:35:32 · 92 阅读 · 0 评论 -
基于PyTorch读入MNIST数据集代码与解析(非手动下载)
from torchvision import datasets, transformsfrom torch.utils.data import DataLoader#定义超参数batch_size = 64#数据预处理data_tf = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5,0.5,...原创 2019-06-13 21:23:28 · 5433 阅读 · 0 评论 -
Expected object of scalar type Float but got scalar type Long for argument #2 'target'
# 损失函数 # nn.MSELoss 来计算均方误差# nn.CrossEntropyLoss 来计算交叉熵损失output = net(input)target = Variable(t.arange(0, 10))# target = target.float()criterion = nn.MSELoss()loss = criterion(output, target)l...原创 2019-08-20 20:08:04 · 536 阅读 · 0 评论 -
PyTorch torchvision transforms函数
class torchvision.transforms.Scale(size, interpolation=2)将输入的PIL.Image重新改变大小成给定的size,size是最小边的边长。举个例子,如果原图的height>width,那么改变大小后的图片大小是(size*height/width, size)。用例:from torchvision import transfor...转载 2019-09-04 19:25:30 · 366 阅读 · 0 评论 -
PyTorch全映射层Linear卷积层Conv1d与Conv2d
class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)一维卷积层,输入的尺度是(N, C_in,L),输出尺度( N,C_out,L_out)的计算方式:out(Ni,Coutj)=bias(Coutj)+∑k=0Cin...转载 2019-09-06 10:17:15 · 3471 阅读 · 0 评论