雅克比迭代法与高斯塞德尔迭代法求解方程组(C语言)

分别用雅可比 迭代法与高斯塞德尔迭代法解下列方程组:
这里写图片描述
雅可比迭代法:

#include<stdio.h>
#include<math.h>
#define eps 1e-6
#define max 100
//雅可比迭代法
void jacobi(float *a,int n,float x[])
{
    int i,j,k=0;
    float epsilon,s;
    float *y=new float[n];
    for(i=0;i<n;i++)x[i]=0;
    while(1)
    {
        epsilon=0;
        k++;
        for(i=0;i<n;i++)
        {
            s=0;
            for(j=0;j<n;j++)
            {
                if(j==i)continue;
                s+=*(a+i*(n+1)+j)*x[j];
            }
            y[i]=(*(a+i*(n+1)+n)-s)/(*(a+i*(n+1)+i));
            epsilon+=fabs(y[i]-x[i]);
        }
        for(i=0;i<n;i++)x[i]=y[i];
        if(epsilon<eps)
        {
            printf("%d\n",k);return;}
        if(k>=max)
        {printf("fasan");return;}
    }
    delete y;
}

void main()
{
    int i;
    float a[4][5]={10,-1,2,0,-11,
                   0,8,-1,3,-11,
                   2,-1,10,0,6,
                   -1,3,-1,11,25};
    float x[4];
    jacobi(a[0],4,x);
    for(i=0;i<4;i++)printf("x[%d]=%f\n",i+1,x[i]);

    float b[9][10]={31,-13,0,0,0,-10,0,0,0,-15,
                   -13,35,-9,0,-11,0,0,0,0,27,
                   0,-9,31,-10,0,0,0,0,0,-23,
                   0,0,-10,79,-30,0,0,0,-9,0,
                   0,0,0,-30,57,-7,0,-5,0,-20,
                   0,0,0,0,7,47,-30,0,0,12,
                   0,0,0,0,0,-30,41,0,0,-7,
                   0,0,0,0,-5,0,0,27,-2,7,
                   0,0,0,0,0,0,0,-2,29,-10};
    float xx[9];
    jacobi(b[0],9,xx);
    for(i=0;i<9;i++)printf("xx[%d]=%f\n",i+1,xx[i]);
}

高斯赛德尔迭代法:

#include<stdio.h>
#include<math.h>
#define N 500
//高斯塞德尔
void gauss(float *a,int n,float x[])
{
    int i,j,k=1;
    float d,dx,eps;
    for(i=0;i<=n-1;i++)x[i]=0.0;
    while(1)
    {
        eps=0;
        for(i=0;i<=n-1;i++)
        {
            d=0;
            for(j=0;j<=n-1;j++)
            {
                if(j==i)continue;
                d+=*(a+i*(n+1)+j)*x[j];
            }
            dx=(*(a+i*(n+1)+n)-d)/(*(a+i*(n+1)+i));
            eps+=fabs(dx-x[i]);
            x[i]=dx;
        }
        if(eps<1e-6)
        {printf("%d\n",k);return;}
        if(k>N)
        {
            printf("fasan\n");
            return;
        }
        k++;
    }
}

void main()
{
    int i;
    float a[4][5]={10,-1,2,0,-11,
                   0,8,-1,3,-11,
                   2,-1,10,0,6,
                   -1,3,-1,11,25};
    float x[4];
    float b[9][10]={31,-13,0,0,0,-10,0,0,0,-15,
                   -13,35,-9,0,-11,0,0,0,0,27,
                   0,-9,31,-10,0,0,0,0,0,-23,
                   0,0,-10,79,-30,0,0,0,-9,0,
                   0,0,0,-30,57,-7,0,-5,0,-20,
                   0,0,0,0,7,47,-30,0,0,12,
                   0,0,0,0,0,-30,41,0,0,-7,
                   0,0,0,0,-5,0,0,27,-2,7,
                   0,0,0,0,0,0,0,-2,29,-10};
    float xx[9];
    gauss(a[0],4,x);
    for(i=0;i<4;i++)printf("x[%d]=%f\n",i+1,x[i]);

    gauss(b[0],9,xx);
    for(i=0;i<9;i++)printf("xx[%d]=%f\n",i+1,xx[i]);
}
  • 20
    点赞
  • 113
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
雅克迭代法是一种基于线性方程组迭代方法,用于求解线性方程组的解。下面是使用雅克迭代法求解线性方程组C语言代码: ```c #include <stdio.h> #include <math.h> #define N 3 int main() { double a[N][N+1] = {{2, 1, -1, 8}, {-3, -1, 2, -11}, {-2, 1, 2, -3}}; double x[N], x_old[N], error = 1e-6; int i, j, k, flag; for (i = 0; i < N; i++) { x[i] = 0; // 初始化解向量 } do { flag = 1; // 标志位 for (i = 0; i < N; i++) { x_old[i] = x[i]; // 保存上一轮迭代的值 x[i] = a[i][N] / a[i][i]; // 计算当前迭代的解向量 for (j = 0; j < N; j++) { if (j == i) { continue; } x[i] -= a[i][j] * x_old[j] / a[i][i]; // 更新解向量 } if (fabs(x[i] - x_old[i]) > error) { // 判断误差 flag = 0; } } } while (!flag); for (i = 0; i < N; i++) { printf("x[%d] = %lf\n", i, x[i]); // 输出解向量 } return 0; } ``` 在这个例子中,我们要求解以下线性方程组: ``` 2x1 + x2 - x3 = 8 -3x1 - x2 + 2x3 = -11 -2x1 + x2 + 2x3 = -3 ``` 代码中的 `a` 数组存储了系数矩阵 `A` 和常数向量 `b`,`x` 数组存储了解向量 `x`。在主循环中,首先将解向量初始化为零向量,然后进行迭代计算,直到误差小于预设值为止。在每一轮迭代中,我们先保存上一轮迭代的解向量,然后根据雅克迭代公式计算当前迭代的解向量,最后判断当前解向量与上一轮迭代的解向量之间的误差是否小于预设值。如果误差大于预设值,则继续迭代;否则退出循环,输出最终的解向量。 需要注意的是,雅克迭代法只适用于对角线元素不为零的情况。如果系数矩阵中存在多个对角线元素为零的情况,就需要使用其他的迭代方法,比如高斯-赛德尔迭代法或者超松弛迭代法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值