NLP Paper
文章平均质量分 94
HHVic
网络
展开
-
NLP十大Baseline论文简述(十) - sgm
文章目录前言:1. Paper:2. 背景介绍3. 论文摘要4. 研究意义前言:如果需要对基础概念不了解,可以参考这里。我汇总了论文中涉及的大部分概念,以便更好的理解论文。1. Paper:SGM: Sequence Generation Model for Multi-Label Classification使用序列生成模型做多标签文本分类2. 背景介绍多标签文本分类是自然语言处理的重要任务,多标签文本分类可以用到文本分类,推荐以及信息检索中。但是目前的多标签文本分类模型存在两个问题:没原创 2021-11-16 11:25:48 · 1061 阅读 · 0 评论 -
NLP十大Baseline论文简述(九) - han_attention
文章目录前言:1. Paper:2. 背景介绍3. 论文摘要前言:如果需要对基础概念不了解,可以参考这里。我汇总了论文中涉及的大部分概念,以便更好的理解论文。1. Paper:Hierarchical Attention Networks for Document Classification使用层次注意力网络做文档分类2. 背景介绍相对于传统的统计机器翻译,基于Encoder-Decoder机制的神经机器翻译有很多优点。但是之前关于Encoder-Decoder的方法都是使用Encode原创 2021-11-02 10:46:15 · 646 阅读 · 0 评论 -
NLP十大Baseline论文简述(八) - attention_nmt
文章目录前言:1. Paper:2. 背景介绍3. 论文摘要4. 研究成果及意义前言:如果需要对基础概念不了解,可以参考这里。我汇总了论文中涉及的大部分概念,以便更好的理解论文。1. Paper:Neural Machine Translation by Jointly Learning to Align and Translate联合学习对齐和翻译的神经机器翻译模型2. 背景介绍相对于传统的统计机器翻译,基于Encoder-Decoder机制的神经机器翻译有很多优点。但是之前关于Enco原创 2021-10-21 16:15:50 · 287 阅读 · 0 评论 -
NLP十大Baseline论文简述(七) - deep_nmt
文章目录前言:1. Paper:2. BlEU介绍3. 背景介绍4. 论文摘要5. 研究意义前言:如果需要对基础概念不了解,可以参考这里。我汇总了论文中涉及的大部分概念,以便更好的理解论文。1. Paper:Sequence to Sequence Learning with Neural Networks使用神经网络来做序列到序列的学习2. BlEU介绍如何评价机器翻译结果的好坏人工评价:通过人主观对翻译进行打分优点:准确缺点:速度慢,价格贵机器自动评价: 通过设置指标对机器翻译结果原创 2021-10-18 13:26:06 · 284 阅读 · 0 评论 -
NLP十大Baseline论文简述(六) -fasttext
文章目录前言:1. Paper:2. 动机介绍3. 背景介绍4. 论文摘要5. 研究成果6. 研究意义7. Fasttext模型8. Fasttext模型优缺点9. 论文总结前言:如果需要对基础概念不了解,可以参考这里。我汇总了论文中涉及的大部分概念,以便更好的理解论文。1. Paper:Bag of Tricks for Efficient Text Classification对于高效文本分类的一揽子技巧2. 动机介绍结合深度学习的文本分类模型和机器学习的文本分类模型的优点,达到:速度原创 2021-10-13 16:43:23 · 331 阅读 · 0 评论 -
NLP十大Baseline论文简述(五) - chartextcnn
文章目录前言:1. Paper:2. 背景介绍3. 论文摘要4. 研究成果4. 研究意义5. CharTextCNN模型优缺点6. 论文总结前言:如果需要对基础概念不了解,可以参考这里。我汇总了论文中涉及的大部分概念,以便更好的理解论文。1. Paper:Character-Level Convolutional Networks for Text Classification使用字符级别的卷积神经网络来做文本分类任务2. 背景介绍文本分类是自然语言处理的基础任务之一,目前大多数文本分类任务原创 2021-10-12 15:38:54 · 237 阅读 · 0 评论 -
NLP十大Baseline论文简述(四) -textcnn
文章目录前言:1. Paper:2. 背景介绍3. 论文摘要4. 研究成果5. 研究意义前言:如果需要对基础概念不了解,可以参考这里。我汇总了论文中涉及的大部分概念,以便更好的理解论文。1. Paper:Convolutional Neural Networks for Sentence Classification基于卷积神经网络的句子分类2. 背景介绍深度学习,词向量和卷积神经网络的发展3. 论文摘要使用简单的CNN模型在预训练词向量基础上进行微调就可以在文本分类任务上得到很好的结果原创 2021-10-08 15:38:15 · 333 阅读 · 0 评论 -
NLP十大Baseline论文简述(三) - C2W
文章目录前言:1. Paper:2. 背景介绍3. 论文摘要4. C2W模型前言:如果需要对基础概念不了解,可以参考这里。我汇总了论文中涉及的大部分概念,以便更好的理解论文。1. Paper:Finding function in form: Compositional character models for open vocabulary word representation从字符中生成嵌入:用于开放词表示的组合字符模型2. 背景介绍词向量的学习对于自然语言处理的应用非常重要,词向量可原创 2021-09-26 22:03:29 · 355 阅读 · 0 评论 -
NLP十大Baseline论文简述(二) - GloVe
文章目录前言:1. Paper:2.论文摘要3.研究成果4.GloVe模型前言:如果需要对基础概念不了解,可以参考这里。我汇总了论文中涉及的大部分概念,以便更好的理解论文。1. Paper:GloVe: Global Vectors for Word Representation 基于全局信息的单词向量表示2.论文摘要Recent methods for learning vector spacerepresentations of words have succeededin ca原创 2021-09-23 23:06:04 · 417 阅读 · 0 评论 -
NLP十大Baseline论文简述(一) - Word2vec
文章目录前言:1. Paper:2.论文摘要:3. 论文介绍:4. 论文原理4.1 CBOW模型:4.2 Skip-gram模型:4.3 降低复杂度 - Hierachical Softmax (层次Softmax) “五星重点”4.4 降低复杂度 - Negative Sampling (负采样) “五星重点”4.5 降低复杂度 - Subsampling of Frequent Words (多重采样)“五星重点”5. 模型复杂度5.1 NNLM的QQQ5.2 RNNLM的QQQ5.3 Skip-g原创 2021-09-18 21:05:09 · 1607 阅读 · 0 评论