前言:电磁场中有很多题目运用了圆柱或球坐标系,下面这篇文章对此有介绍,后面有时间
第一章 静电场
1-1 电场强度·电位
相当于观察者为静止的,电荷量不随时间变化的电荷所引起的电场,为静电场
引入静电场的另一个重要的常量:标量电位φ
1.1.1 电场强度
库仑定律:当两个静止的小带电体之间的距离远远大于他们本身的几何尺寸时,
它们之间的作用力可以表示为:
(1-1)
其中,是真空的介电常数,值为
,单位为F/m
库仑定律给出了两点电荷至今作用力的量值与方向,但未说明作用力是通过什么途径
传播的。现在知道,作用力是通过电场以有限速度传播的
场强定义为: 单位为V/m (1-2)
位于坐标原点点电荷在无限大真空中引起的场强为: (1-3)
位于任意坐标的点电荷在真空中任一点引起的场强: (1-4)
1.1.2 叠加积分法计算电场强度E
式(1-4)说明场强与电荷量成正比,因此可以利用叠加定理求多个点电荷形成的场强
对于电场中的某一点,场强为 (1-5)
对于以体密度连续分布在V中的体积电荷
(1-6)
对于面积电荷和线电荷 (1-7)
· (1-8)
例题:一半径为a的球面上均匀分布有电荷,其电荷面密度为,求球面电场的电场
分析:这一题需要从球外和球内两个角度进行分析。在此之前,先对球坐标进行
一个简单的介绍。以P(r,θ,φ)描述球坐标,其中p是球坐标中的任意一点,
r是p到球心的距离,θ是r与z轴的夹角,φ是r在xoy面上的投影与x轴的夹角。
若是在球面上取一个面元,则面积可以表示为。
其他更详尽的介绍可以参考开头的那篇链接。
回到这一题。先分析球外的情况,我们可以得出(r,θ,φ&#