最小生成树中的三种经典算法
一、Prim算法
Prim算法是由Prim在1957年提出的一个著名算法。作者因此而出名。
算法根据MST(Minimum Spanning Tree)的性质:
设G=(V,E)是一个无向联通网,U是顶点集V的一个非空子集,若(u,v)是一条具有最小全集的边,其中具有u属于U,v属于V-U,则必然存在一棵包含边(u,v)的最小生成树。
算法过程:
1、从U={u0}(u0属于V),TE={ }开始,重复下面过程;
2、在所有u属于U,v属于{V-U}的边(u,v)属于E中,找一条代价最小的边并入集合TE,同时v并入U;
3、重复2,直到U=V为止,此时TE中必有n-1条边,否则说明图G非连通图;
算法实现的数据结构相对容易,数组或结构体均可以,具体的实现可以参考以下的题目:
http://blog.csdn.net/landy_john/article/details/7480277
http://blog.csdn.net/landy_john/article/details/7464125
http://blog.csdn.net/landy_john/article/details/7439347
二、Kruskal算法
数学家克鲁斯克尔于1956年提出。
算法原理:
按照边的从小到大取边,并入边的两个节点,在这个过程中保证并入边后不构成圈,因此也称避圈法。
算法过程:
1、选择边e1,使得其权值最小;
2、若已经选定边e1, e2,…,ek,则从E-{e1, e2,…,ek }中选择边ek+1,使得:
(a)、G[e1, e2,…, ek+1]为无圈图
(b)、ek+1的权值w(ek+1)尽可能小
3、当2不能进行时,停止。
算法的实现可以采用并查集,具体联系题目可参考如下:
http://blog.csdn.net/landy_john/article/details/7480277
http://blog.csdn.net/landy_john/article/details/7464125
http://blog.csdn.net/landy_john/article/details/7439347
三、破圈法
在克鲁斯克尔算法基础上,我国著名数学家管梅谷教授于1975年提出了最小生成树的破圈法。
算法大致过程:
1、从赋权图G的任意圈开始,去掉该圈中权值最大的一条边,称为破圈;
2、不断破圈,直到G中没有圈为止,最后剩下的G的子图为G的最小生成树。
算法实现可以参考如下描叙:
1、算法可以运用栈和 Depth First Search(DFS)算法;
2、当遍历到达起点时,就会得到一个圈;
3、破圈,继续遍历。