客户案例|大模型驱动下的澜舟智能投研解决方案高效实践

01 概 述

随着金融市场的蓬勃发展,投研行业也迎来了快速增长的阶段。然而,传统的投资研究与分析模式,无论是依赖数学模型和数据进行量化分析的金融工程定量分析,还是基于知识、经验和主观判断的专家定性分析,均面临着市场覆盖不全面、效率低下以及昂贵的人力成本等挑战。

大模型技术的引入为破解这些问题提供了突破口。借助大模型技术,券商能够高效地处理海量的金融数据,同时提供更加精准的投资分析服务,显著提升了数据处理能力和分析效率。

与此同时,智能投研已成为金融行业应用大模型技术的关键方向之一。近年来,随着资本市场的扩张和投资者需求的增加,中国智能投研市场规模增长迅猛。根据中研普华研究院撰写的《2024-2029年中国智能投研行业市场前景预测及发展趋势预判报告》显示,2018年市场规模为104.2亿元人民币,2024年增长至300亿元以上,预计2025年以后将进一步扩大。这一趋势,表明智能投研行业保持了较高的增长率,正快速推动金融行业的数字化和智能化进程。

澜舟科技凭借对孟子大模型系列的深入研究,推出了澜舟智库-企业智能知识库、澜舟智会-智能会议助手、澜舟智搭-Agent智能体平台等一系列标杆性产品,这些产品均可面向投研行业相关业务场景,帮助投研人员快速挖掘投资线索,并有效辅助研究成果的产出。

02 案例描述

需求及痛点分析

在市场规模不断扩大的同时,证券行业在智能投研领域也面临着诸多的需求和痛点,核心难题包括信息繁杂、数据分散以及效率低下,具体表现为:

  • 每日海量的公告、新闻、研报等信息使投研从业者难以快速筛选和甄别有价值的信息;
  • 投研信息系统普遍存在的割裂现象和数据孤岛问题,阻碍了与外部数据整合,无法形成统一的资源整合与分析平台;
  • 投研过程中涉及的数据类型多样且复杂,从低频到高频、从结构化到非结构化,传统的人工处理方式无法适应这种复杂性;
  • 分析师频繁参与线下、线上路演以及长时间的报告撰写工作,高强度的工作模式亟需高效的工具来提升效率。

针对以上问题,某头部券商研究部(以下简称“某券商”)致力于优化投研的“读”、“搜”、“问”、“写”、“管”五大环节效率。其核心策略在于运用大模型技术,实现多源数据的统一接入和管理,深度解析公司公告、研究报告等内容,快速提炼关键信息,减少人工处理的重复性劳动。例如:

  • 关键信息高效提取:平台能够自动解析复杂格式的研报,迅速提炼标题和摘要等核心信息,并以结构化的形式直观展示,方便检索和分析。同时,通过借助大模型的搜索问答功能,可以快速锁定目标内容;
  • 数据溯源和指标优化:平台可以基于内部精品指标库及外部数据库,生成高质量的投资洞见,为投研工作提供可靠的数据支持;
  • 投研文档智能撰写:平台能够模拟专业分析师的工作模式,高效提取和整理历史文档信息,通过自然语言对话形式与用户进行多轮交互,从而生成高质量的专业投资报告、尽调报告、点评报告等;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值