堆栈相关(有道备份)

一. 堆栈:

堆heap,先进先出
栈stack,先进后出
向里面放置元素的时候叫做压栈(push)
向外取出元素的时候叫做弹栈(pop)
可以把栈想象成一个桶:在这里插入图片描述

堆:运行时可动态分配的数据区域(即为new),数据不共享(因每次都是新对象)。
栈:速度快(仅次于寄存器),数据共享,数据的大小和生存周期在运行前提前确定。

二. 值传递和引用传递;

例子:值传递(8种基本数据类型)和引用传递(类 数组 接口)
P431

三. 对象实例化过程:

(参考书P194)
Human aperson = new Human();

右侧:
new 在运行时在堆(内存)上创建对象,并存放对象的变量和方法
(每次new都是创建新对象,所以堆数据不共享。)

左侧:
对象的名字aperson就是对象引用(reference),存放栈上。

等于(赋值):
把new在堆上创建的对象地址,赋值给对象引用aperson。

图解:在这里插入图片描述
其他:一个引用可指向多个对象,一个对象可有多个引用。
注:内存指的是JVM虚拟出来的Java进程的内存空间

四. ​Java中堆内存和栈内容的区别

第九章,,P203和P204

五.方法在栈内存

在JVM当中有一块内存空间,就是栈区,专门为方法准备的。方法执行所需要的内存空间都在栈当中分配。
1. 方法调用之后给该方法分配内存,在JVM的“栈区”当中分配空间,
2. 方法调用分配空间的过程就是:压栈(push)的过程。
3. 方法执行结束之后,给这个方法分配的所有空间全部释放,此时发生弹栈(pop)的动作。

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制方法。通过结合数据驱动技术与Koopman算子理论,将非线性系统动态近似为高维线性系统,进而利用递归神经网络(RNN)建模并实现系统行为的精确预测。文中详细阐述了模型构建流程、线性化策略及在预测控制中的集成应用,并提供了完整的Matlab代码实现,便于科研人员复现实验、优化算法并拓展至其他精密控制系统。该方法有效提升了纳米级定位系统的控制精度与动态响应性能。; 适合人群:具备自动控制、机器学习或信号处理背景,熟悉Matlab编程,从事精密仪器控制、智能制造或先进控制算法研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①实现非线性动态系统的数据驱动线性化建模;②提升纳米定位平台的轨迹跟踪与预测控制性能;③为高精度控制系统提供可复现的Koopman-RNN融合解决方案; 阅读建议:建议结合Matlab代码逐段理解算法实现细节,重点关注Koopman观测矩阵构造、RNN训练流程与模型预测控制器(MPC)的集成方式,鼓励在实际硬件平台上验证并调整参数以适应具体应用场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值