机器学习
文章平均质量分 58
Key_rongji
这个作者很懒,什么都没留下…
展开
-
Scikit中使用Grid_Search来获取模型的最佳参数
https://blog.csdn.net/u012897374/article/details/74999940转载 2020-04-26 15:32:08 · 249 阅读 · 0 评论 -
FM、FFM
https://www.jianshu.com/p/1db7404689c5转载 2020-04-24 12:53:09 · 356 阅读 · 0 评论 -
机器学习一览表
https://blog.csdn.net/zqx951102/article/details/83177370?depth_1-utm_source=distribute.pc_relevant.none-task-blog-OPENSEARCH-1&utm_source=distribute.pc_relevant.none-task-blog-OPENSEARCH-1转载 2020-04-19 19:01:56 · 206 阅读 · 0 评论 -
Kaggle与机器学习流程
机器学习解决问题的流程:http://blog.csdn.net/han_xiaoyang/article/details/50469334https://www.linkedin.com/pulse/approaching-almost-any-machine-learning-problem-abhishek-thakur/xgboost:https://github.com/dmlc/...原创 2020-04-18 17:20:47 · 316 阅读 · 0 评论 -
集成算法总结 AdaBoost、GBDT、XGBoost、LightGBM
https://blog.csdn.net/fenghuibian/article/details/91353348?depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromBaidu-6&utm_source=distribute.pc_relevant.none-task-blog-BlogComm...原创 2020-04-22 16:52:39 · 2969 阅读 · 0 评论 -
用人话理解L1和L2正则化
https://blog.csdn.net/jinping_shi/article/details/52433975原创 2020-03-26 13:29:04 · 259 阅读 · 0 评论 -
回归算法(三):Softmax回归
四、Softmax回归解决多分类问题。1. 换个思路推导出softmax函数在《回归算法(二):逻辑回归》中提到,P(yi=1|xi)依赖于exp(wxi),用一个参数向量w来推测yi属于1的概率,exp(wxi)大则说明yi属于1的概率大,exp(wxi)小则说明yi属于1的概率小;只不过在二分类问题中,yi属于1的概率小,则yi不属于1,而属于另一类(yi=0)。但在多分类问题...原创 2020-03-26 15:32:40 · 835 阅读 · 0 评论 -
回归算法(二):逻辑回归
三、逻辑回归解决二分类问题。原创 2020-03-26 12:17:02 · 547 阅读 · 0 评论 -
回归算法(一):线性回归
以下所说的样本数量是 M,特征数量是 N一、一元线性回归模型输出:;w是特征权重,b是偏置参数如何拟合出最佳的曲线:最小化即可。以上是高中知识。二、多元线性回归模型输出:公式转换:记住这个结论:累加可以变成一个行向量x列向量。对下面的公式推导很有帮助。为了让公式更加简洁,为什么不把b放进向量里呢?于是有:得:所以有:如何拟合出最佳曲线...原创 2020-03-25 17:55:26 · 1187 阅读 · 0 评论 -
决策树(ID3、C4.5、CART)与随机森林
1. 什么是决策树?根据一系列特征,最终决定结果的树,叫做决策树。2. 如何构建决策树?方案一:ID3算法首先,说明一些重要公式:信息量: 信息熵: 信息熵期望:;s是未分裂前的节点,sj是按照属性 V 分裂后属于各属性值 j 的节点信息熵是事物不确定性的度量标准。信息熵越大,不确定性越大,混乱程度越大。算法流程:(1)给定样本,先将特征离散化...原创 2020-03-25 12:54:02 · 2590 阅读 · 0 评论 -
机器学习:分类问题的评价指标
分类预测类别 y1 y2 实际类别 y1 C11 C12 y2 C21 C22 准确度精确率召回率F值β越小,越倾向于精确率;β越大,越倾向于精确率和召回率的混合。最常见是β=1,此时就是常见的AUC欢迎转载,转载请标明出处。...原创 2020-03-24 10:53:44 · 610 阅读 · 0 评论 -
用人话理解Kmeans聚类
Kmeans聚类1. 层次聚类 vs 非层次聚类 不同类之间有无包含关系2. 硬聚类 vs 软聚类 硬聚类:每个对象只属于一个类 软聚类:每个对象以概率属于某个类。比如:样本1:A-0.8,B-0.1,C-0.13. 各样本之间的距离 ① 将特征向量化,每个样本表示为高维空间的一个点 ② 计算各个点之间的距离(距离与相似度成反比)...原创 2020-03-24 10:53:58 · 378 阅读 · 0 评论 -
机器学习评测标准:AUC
机器学习评测标准:AUCAUC的解释:正样本排在负样本之前的概率 ROC曲线与FP_rate围成的面积【ROC曲线:横坐标是FP_rate(假正率),纵坐标是TP_rate(假负率)】要求解AUC避免不了要画ROC,实质上只是求出ROC各点的坐标,那如何画ROC曲线呢?将样本按照预测分数从大到小排列:sample label predict 1 1 ...原创 2020-03-23 16:44:33 · 720 阅读 · 0 评论 -
用人话理解朴素贝叶斯
用文章分类解释一下朴素贝叶斯公式:X:文章 ----->xj:文章的词 将P(X)转换成P(xj),即P(X)是特征词在词库中出现的概率 P(yi):这个类别的先验概率 P(xj|yi):在yi类别的文章中xj这个特征词出现的概率 P(yi|X):在这些词的前提下,文章属于类别yi的概率如何判断这篇文章是属于yi还是y2?比较P(y1|X)和P(y2|X)...原创 2020-03-23 15:46:41 · 551 阅读 · 1 评论