- 博客(15)
- 收藏
- 关注
原创 “英特尔创新大师杯”深度学习挑战赛 赛道1:通用场景OCR文本识别任务(上)task01
“英特尔创新大师杯”深度学习挑战赛 赛道1:通用场景OCR文本识别任务(上)DataWhale七月份组队学习——基于AI Studio平台https://aistudio.baidu.com/aistudio文章目录“英特尔创新大师杯”深度学习挑战赛 赛道1:通用场景OCR文本识别任务(上)背景一、AI Studio二、模型训练下载模型解压模型背景OCR (Optical Character Recognition,光学字符识别)是最早的计算机视觉任务之一。人类使用电子设备(图像采集装置)采集
2021-07-16 23:06:15 396
原创 集成学习-案例分析(幸福感预测)task14.2021.05.17
集成学习-案例分析(幸福感预测)task14.2021.05.17文章目录集成学习-案例分析(幸福感预测)task14.2021.05.17背景1.1数据信息1.2评价指标1.3查看数据基本信息1.4数据预处理1.4数据增广1.4.1特征建模1.5模型融合1.6结果保存总结背景1.1 背景介绍幸福感是一个古老而深刻的话题,是人类世代追求的方向。与幸福感相关的因素成千上万、因人而异,大如国计民生,小如路边烤红薯,都会对幸福感产生影响。这些错综复杂的因素中,我们能找到其中的共性,一窥幸福感的要义吗
2021-05-17 19:39:38 602
原创 集成学习-Stacking集成学习算法(task13.2021.0512)
集成学习-Stacking集成学习算法(task13.2021.0512)文章目录集成学习-Stacking集成学习算法(task13.2021.0512)一、Stacking集成学习算法二、代码Blending与Stacking对比总结一、Stacking集成学习算法基于前面对Blending集成学习算法的讨论,我们知道:Blending在集成的过程中只会用到验证集的数据,对数据实际上是一个很大的浪费。为了解决这个问题,我们详细分析下Blending到底哪里出现问题并如何改进。在Blending中,
2021-05-12 21:07:36 808
原创 集成学习-Blending集成学习算法(task12.2021.05.10)
集成学习-Blending集成学习算法(task12.2021.05.10)文章目录集成学习-Blending集成学习算法(task12.2021.05.10)一、导言二、Blending集成学习算法1.故事2.Blending集成学习方式总结一、导言在前几个章节中,我们学习了关于回归和分类的算法,同时也讨论了如何将这些方法集成为强大的算法的集成学习方式,分别是Bagging和Boosting。本章我们继续讨论集成学习方法的最后一个成员–Stacking,这个集成方法在比赛中被称为“懒人”算法,因
2021-05-10 20:07:11 200
原创 集成学习-XGBoost算法分析与案例调参实例(task11.2021.04.26)
集成学习-XGBoost算法分析与案例调参实例(task11.2021.04.26)文章目录集成学习-XGBoost算法分析与案例调参实例(task11.2021.04.26)XGBoost算法简介XGBoost的核心算法思想不难,基本就是:一、XGBoost分类案例二、XGBoost回归案例三、XGBoost调参(结合sklearn网格搜索)总结树该怎么长如何停止树的循环生成XGBoost算法简介XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的
2021-04-26 19:43:01 449
原创 集成学习-前向分步算法与梯度提升决策树(task10.2021.04.23)
前向分步算法与梯度提升决策树这一章重点学习adaboost的前向分布算法。回看Adaboost的算法内容,我们需要通过计算M个基本分类器,每个分类器的错误率、样本权重以及模型权重。我们可以认为:Adaboost每次学习单一分类器以及单一分类器的参数(权重)。接下来,我们抽象出Adaboost算法的整体框架逻辑,构建集成学习的一个非常重要的框架----前向分步算法,有了这个框架,我们不仅可以解决分类问题,也可以解决回归问题。文章目录前向分步算法与梯度提升决策树一、Adaboost的加法模型二、Adabo
2021-04-23 20:28:01 141
原创 集成学习-Boosting的思路与Adaboost算法(task09.20210420)
集成学习-Boosting的思路与Adaboost算法(task09.20210420)文章目录集成学习-Boosting的思路与Adaboost算法(task09.20210420)导论一、Boosting方法的基本思路二、Adaboost算法三、利用sklearn对Adaboost算法进行建模四、总结导论在前面的学习中,我们探讨了一系列简单而实用的回归和分类模型,同时也探讨了如何使用集成学习家族中的Bagging思想去优化最终的模型。Bagging思想的实质是:通过Bootstrap 的方式对
2021-04-20 19:02:07 412
原创 集成学习-bagging的原理与案例分析(task08.2021.04.17)
集成学习-bagging的原理与案例分析(task08.2021.04.17)Bagging算法 (英语:Bootstrap aggregating,引导聚集算法),又称装袋算法。这一章,我们来学习bagging算法,与投票法不同的是,Bagging不仅仅集成模型最后的预测结果,同时采用一定策略来影响基模型训练,保证基模型可以服从一定的假设。在上一章中我们提到,希望各个模型之间具有较大的差异性,而在实际操作中的模型却往往是同质的,因此一个简单的思路是通过不同的采样增加模型的差异性。文章目录集成学习-b
2021-04-17 17:56:03 932
原创 集成学习(投票法的原理和案例分析task07.2021.4.14)
集成学习(投票法的原理和案例分析task07.2021.4.14)投票法是集成学习中常用的技巧,可以帮助我们提高模型的泛化能力,减少模型的错误率。文章目录集成学习(投票法的原理和案例分析task07.2021.4.14)一、投票法的思路二、投票法的思路分析三、投票法的案例分析(基于sklearn,介绍pipe管道的使用以及voting的使用)总结一、投票法的思路 投票法是集成学习中常用的技巧,可以帮助我们提高模型的泛化能力,减少模型的错误率。举个例子,在航空航天领域,每个零件发出的电信号都对航
2021-04-14 08:13:27 324
原创 集成学习
集成学习-掌握分类问题的评估及超参数调优(task06.3.29)来到最后一章,这章重点是学习如何掌握分类问题的评估及超参数调优。分类问题的评估及超参数调优集成学习-掌握分类问题的评估及超参数调优(task06.3.29)一、用管道简化工作流二、使用k折交叉验证评估模型性能三、使用学习和验证曲线调试算法四、通过网格搜索进行超参数调优五、比较不同的性能评估指标总结一、用管道简化工作流在很多机器学习算法中,我们可能需要做一系列的基本操作后才能进行建模,如:在建立逻辑回归之前,我们可能需要先对数据进行标准
2021-03-29 19:24:42 129 1
原创 集成学习-掌握基本的分类模型(task05.03.27)
集成学习-掌握基本的分类模型(task05.03.27)这一章,我们通过sklearn来构建完整的分类项目,由此对分类模型有更深的认识。文章目录集成学习-掌握基本的分类模型(task05.03.27)1.使用sklearn构建完整的分类项目1.1IRIS鸢尾花数据集1.2度量模型性能指标1.3选择具体的模型并进行训练2.基于概率的分类模型2.1线性判别分析2.2朴素贝叶斯2.3决策树2.4支持向量机SVM总结1.使用sklearn构建完整的分类项目1.1IRIS鸢尾花数据集在数据集上我们使用我
2021-03-27 19:39:12 138
原创 集成学习4(task4.03.23)
集成学习4(task4.03.23)文章目录集成学习4(task4.03.23)掌握回归模型的评估及超参数调优总结掌握回归模型的评估及超参数调优我们似乎对模型的优化都是对模型算法本身的改进,比如:岭回归对线性回归的优化在于在线性回归的损失函数中加入L2正则化项从而牺牲无偏性降低方差。但是,大家是否想过这样的问题:在L2正则化中参数λ\lambdaλ应该选择多少?是0.01、0.1、还是1?到目前为止,我们只能凭经验或者瞎猜,能不能找到一种方法找到最优的参数λ\lambdaλ?事实上,找到最佳参数的
2021-03-24 18:54:50 118
原创 集成学习(task03.03.22)
集成学习(task03.03.22)回顾task02,我们这次学习的是偏差与方差理论文章目录集成学习(task03.03.22)优化基础模型总结优化基础模型在刚刚的回归问题的基本算法中,我们使用数据集去估计模型的参数,如线性回归模型中的参数w,那么这个数据集我们称为训练数据集,简称训练集。我们在回归问题中使用训练集估计模型的参数的原则一般都是使得我们的损失函数在训练集达到最小值,其实在实际问题中我们是可以让损失函数在训练集最小化为0,如:在线性回归中,我加入非常多的高次项,使得我们模型在训练集的
2021-03-23 00:54:59 511
原创 集成学习(task02.2021.03.18)
集成学习(task02.2021.03.18)回顾task01,学习了三个基础模型,以下开始sklearn学习。文章目录集成学习(task02.2021.03.18)使用sklearn构建完整的回归项目步骤线性回归的推广总结使用sklearn构建完整的回归项目步骤一般来说,一个完整的机器学习项目分为以下步骤:明确项目任务:回归/分类收集数据集并选择合适的特征。选择度量模型性能的指标。选择具体的模型并进行训练以优化模型。评估模型的性能并调参。(1) 收集数据集并选择合适的特征:在
2021-03-18 20:01:25 351
原创 集成学习(task01.2020.03.15)
集成学习(task01.2020.03.15)机器学习基础模型回顾集成学习(task01.2020.03.15)导论一、什么是机器学习?二、机器学习的三大基础模型2.1.回归2.读入数据总结导论随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、什么是机器学习?机器学习的一个重要的目标就是利用数学模型来理解数据,发现数据中的规律,用作数据的分析和预测。数据通常由一组向量组成,这组
2021-03-15 19:47:57 162
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人