推荐算法
带着托托写代码
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
推荐算法-GBDT与LR算法融合
什么是GBDT算法? GBDT算法是boosting算法中的一种,这种算法的特点是,由多个弱分类算法组成,并且下级的弱分类器是依赖上级分类器的。 GBDT算法依赖CART算法 cart算法的目标是找到一个分割点使得分割后的两个子集合内部产生的方差要最小。公式如下: 通过上面的方式可以产生m个决策区域,而决策的过程其实就是根据输入条件找到符合条件的决策区域,该区域的平均值就是预测值。 ...原创 2020-04-11 14:53:48 · 516 阅读 · 0 评论 -
推荐系统-基于标签的推荐系统
1. 计算用户对标签的的喜爱程度 用户对物品的喜欢程度a(可以使用频次来计算) 物品与标签的相关度b(有该标签为1,没有该标签为0) 用户对标签的喜爱程度可以使用a*b得到 加入平滑因子可以使当评分行为较少时产生的误差 rate(u,t)用户u对标签t的喜爱程度 rate(u,i)用户u对物品i的喜爱程度 rel(i,t)物品i于标签t的相关度 2. 计算用户对标签的依...原创 2020-04-06 17:49:31 · 1407 阅读 · 1 评论 -
推荐系统-基于内容,基于物品,基于用户的推荐算法比较
首先应该知道,一个系统中这3个基本的算法肯定是都存在的,这个问题所要讨论的是不同的场景,不同用户,怎样选取合适的推荐算法。 1. 根据不同的场景选择合适的推荐算法 a. 当物品数量远少于用户数量时且物品数量相对稳定,选择基于物品的推荐算法。理由:计算量小,且物品信息稳定 b.当用户数远小于物品数量且用户数量稳定时,选择基于用户的推荐算法。理由:计算量小,且用户信息稳定。 2. 从多样性的角...原创 2020-03-30 22:29:51 · 2074 阅读 · 0 评论 -
推荐系统-基于用户的协同过滤系统
1. 什么是基于用户的协同过滤算法? 简单来说,给用户推荐和她兴趣相投的其她用户喜欢的物品。 2. 实施步骤 a. 构建用户的特征维度 b. 求用户间的相识度 c. 计算推荐结果 还是通过一个例子来说吧! 链接:https://pan.baidu.com/s/1TzeSENwaIyOBrsJIAOauIw 提取码:8deq 需要注意的点: 1.在计算用户相似度的前,我们需要构建...原创 2020-03-29 19:46:04 · 395 阅读 · 0 评论 -
推荐系统-基于内容的推荐系统
1. 什么是基于内容推荐? 其实就是基于物品的属性进行推荐 2. 实施步骤: a. 构造物品的特征是属性 b. 计算物品之间的相识度,相识度的计算依赖于属性值,相识度的算法可以是pearson系数,consin相识度,欧式距离等 c. 计算用户对相似物品的喜好程度 d .推送评分高的物品给用户 3. 各步骤细说 a. 构建特征的方式 构建结构化特征,如果物品是手机,那么它的品牌,...原创 2020-03-29 17:08:02 · 946 阅读 · 0 评论 -
推荐系统-电影推荐系统
本文的代码-源于《推荐系统开发实战》 数据源:train.json, 含有用户看过的所有的电影,以及他对电影的评分 使用算法: 皮尔逊相关系数 公式: 皮尔逊相关系数的取值范围是[-1,1],1表示完全正相关,-1表示完全负相关 那么,为什么要使用pearson系数呢,它和欧式距离和cosin相似的有什么区别。 pearson通过一系列的数学推导之后被证明和经过标准化后的欧式距离...原创 2020-03-28 10:50:52 · 5830 阅读 · 0 评论
分享