import pandas as pd
import numpy as np
# series 的使用方法
s = pd.Series([1,3,6,np.nan,44,1])
print(s)
print(s.dtype)
#DataFrame 的创建:
dates= pd.date_range('20170101',periods=6)
df = pd.DataFrame(np.random .randn(6,4),index= dates,columns=['a','b','c','d'])
print(df)
'''
DataFrame是一个表格型的数据结构,它包含有一组有序的列,
每列可以是不同的值类型(数值,字符串,布尔值等)。
DataFrame既有行索引也有列索引, 它可以被看做由Series组成的大字典。
'''
#dataFrame的挑选
print(df['b']['2017-01-02'])
#创建没有给定标签的dataFrame
df1 = pd.DataFrame(np.arange(12).reshape(3,4))
print(df1)
#这样,他就会采取默认的从0开始 index. 还有一种生成 df 的方法, 如下 df2:
df2 = pd.DataFrame({'A' : 1.,
'B' : pd.Timestamp('20130102'),
'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
'D' : np.array([3] * 4,dtype='int32'),
'E' : pd.Categorical(["test","train","test","train"]),
'F' : 'foo'})
print(df2)
"""
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
"""
# 这种方法能对每一列的数据进行特殊对待. 如果想要查看数据中的类型, 我们可以用 dtype 这个属性:
print(df2.dtypes)
"""
df2.dtypes
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
"""
print(df2.index)
print(df2.columns)
print(df2.values) # df2的值
import numpy as np
# series 的使用方法
s = pd.Series([1,3,6,np.nan,44,1])
print(s)
print(s.dtype)
#DataFrame 的创建:
dates= pd.date_range('20170101',periods=6)
df = pd.DataFrame(np.random .randn(6,4),index= dates,columns=['a','b','c','d'])
print(df)
'''
DataFrame是一个表格型的数据结构,它包含有一组有序的列,
每列可以是不同的值类型(数值,字符串,布尔值等)。
DataFrame既有行索引也有列索引, 它可以被看做由Series组成的大字典。
'''
#dataFrame的挑选
print(df['b']['2017-01-02'])
#创建没有给定标签的dataFrame
df1 = pd.DataFrame(np.arange(12).reshape(3,4))
print(df1)
#这样,他就会采取默认的从0开始 index. 还有一种生成 df 的方法, 如下 df2:
df2 = pd.DataFrame({'A' : 1.,
'B' : pd.Timestamp('20130102'),
'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
'D' : np.array([3] * 4,dtype='int32'),
'E' : pd.Categorical(["test","train","test","train"]),
'F' : 'foo'})
print(df2)
"""
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
"""
# 这种方法能对每一列的数据进行特殊对待. 如果想要查看数据中的类型, 我们可以用 dtype 这个属性:
print(df2.dtypes)
"""
df2.dtypes
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
"""
print(df2.index)
print(df2.columns)
print(df2.values) # df2的值