zcx_language
码龄7年
关注
提问 私信
  • 博客:96,960
    社区:371
    97,331
    总访问量
  • 75
    原创
  • 1,243,191
    排名
  • 14
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2018-03-09
博客简介:

language_zcx的博客

查看详细资料
个人成就
  • 获得37次点赞
  • 内容获得9次评论
  • 获得139次收藏
创作历程
  • 1篇
    2023年
  • 1篇
    2021年
  • 20篇
    2020年
  • 21篇
    2019年
  • 43篇
    2018年
成就勋章
TA的专栏
  • Tutorials
    5篇
  • C++
    5篇
  • Python
    1篇
  • Basic Algorithm
    5篇
  • Acm
    18篇
  • Diary
  • 2023
  • Mathematics
    2篇
  • Deep Learning
    18篇
  • Paper Notes
    13篇
  • Face Forgery Detection
    1篇
  • Object Detection
    2篇
  • Others
    8篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉深度学习神经网络pytorch图像处理
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Face Forgery Suvery

Face Forgery Survey
原创
发布博客 2023.03.11 ·
555 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Conversion between affine matrix and ‘theta‘

Conversion between affine maxtrix and 'theta'
原创
发布博客 2020.11.28 ·
481 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Local Feature Detection and Description

IntroductionSuperPoint: Self-supervise Interest Point Detection and DescriptionAbstractMagicPoint利用简单几何图像的关键点易于提取且定义较为明确的特点来构造简单数据集,并基于此训练简单几何图像兴趣点检测模型MagicPoint。Homographic Adaptation作者利用MS-COCO数据集和上述训练的MagicPoint模型,并结合其提出的Homographic Adaptation机
原创
发布博客 2021.04.22 ·
579 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

On the Detection of Digital Face Manipulation(CVPR2020)

On the Detection of Digital Face Manipulation文章目录IntroductionInnovationMethodExperimentIntroduction随着先进的面部合成和面部处理方法的出现,新型的伪造人脸正在被创造出来,它们在社交媒体中的使用引起了人们的极大关注。与传统的将人脸伪造检测看做一个二分类问题不同的是,本文提出多任务学习模型,在检测伪造图片的同时,对图像中的伪造区域进行定位。文中采用注意力机制,通过训练学习得到的attention map不仅可
原创
发布博客 2020.09.25 ·
2312 阅读 ·
0 点赞 ·
0 评论 ·
14 收藏

有关深度神经网络参数初始化的1.思考

文章目录初始化参数不能为零?测试 A输出结果测试B输出结果结论初始化参数不能为零?测试 Aimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.utils import datafeatures = torch.randn((100, 3))labels = torch.randn(100, 1)dataset = data.TensorDataset(features, labels)d
原创
发布博客 2020.07.11 ·
240 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习常用损失函数小结

转自:很吵请安青争-线性回归模型损失函数为什么是均方差
转载
发布博客 2020.07.08 ·
169 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Multi-Label Image Recognition with Graph Convolutional Networks(CVPR 2019)

Large-Scale Object Detection in the Wild from Imbalanced Multi-LabelsPaper PDF文章目录IntorductionInnovationMethodExperimentIntorductionInnovationMethodExperiment
原创
发布博客 2020.06.18 ·
857 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

Image Classification vs. Object Detection vs. Image Segmentation

文章目录Image ClassificationMulti-label ClassificationObject DetectionObject SegmentationIn Short在计算机视觉领域,我们大多数人最常见的疑问之一就是图像分类、目标检测和图像分割有什么区别。当我开始在计算机视觉领域学习时,我也对这些术语感到困惑。所以,我决定分析这些术语来帮助更好地理解它们之间的区别。Image Classification给你一张图片:你会立刻认出它是一只狗。回想一下,你是如何得出这个结论的。您
翻译
发布博客 2020.06.17 ·
1156 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

CNN-RNN: A Unified Framework for Multi-label Image Classification(CVPR 2016)

CNN-RNN: A Unified Framework for Multi-label Image ClassificationPaper PDF文章目录IntroductInnovationMethodExperimentIntroductInnovationMethodExperiment
原创
发布博客 2020.06.15 ·
982 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

DeepFakes Datasets(2020.06)

本文内容来自DatasetsURLRealFakeActorsMethodVisual Quality(SSIM)Release DateUADFV...
原创
发布博客 2020.06.11 ·
2698 阅读 ·
3 点赞 ·
0 评论 ·
18 收藏

Learning Generalized Spoof Cues for Face Anti-spoofing

Learning Generalized Spoof Cues for Face Anti-spoofingpaper PDFhttps://blog.csdn.net/fuwenyan/article/details/77769224
原创
发布博客 2020.06.01 ·
2420 阅读 ·
6 点赞 ·
0 评论 ·
10 收藏

Seeing Voices and Hearing Faces: Cross-modal biometric matching(CVPR 2018)

Seeing Voices and Hearing Faces: Cross-modal biometric matchingPaper PDF文章目录IntroductionInnovationMethodExperimentIntroductionInnovationMethodExperiment
原创
发布博客 2020.05.28 ·
775 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

Self-supervised Representation Learning from Videos for Facial Action Unit Detection(CVPR 2019)

Self-supervised Representation Learning from Videos for Facial Action Unit Detection(CVPR 2019)Paper PDF文章目录IntroductionInnovationMethodFeature disentanglingTarget reconstructionCycle with AU/pose changedExperimentImplementation details DetailedCompariso
原创
发布博客 2020.05.24 ·
1628 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

Detecting Deep-Fake Videos from Appearance and Behavior

Face-swap方式,将target的脸替换为source的脸,形成deepfake video.这种方式只是改变了target的型,而没有改变target的神,意思就是说deepfake video中人物的神情习惯仍然是target的。作者利用这一特征。通过将人物identity和behavior feature关联起来。作者分别以以video中的behavior feature和face为线...
原创
发布博客 2020.05.20 ·
2173 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

Protecting World Leaders Against Deep Fakes(CVPR 2020)

文章目录IntroductionInnovationMethodExperimentProtecting World Leaders Against Deep Fakes(CVPR 2020)paper PDFIntroduction深度学习的应用促使了人脸伪造技术的巨大进步。现有AI-合成的人脸伪造方式可以分为以下三种:face swap:将视频中出现的人脸替换为其他人的脸,一般对整个面部进行对齐和替换lip-sync:使得视频中的人物口型按照既定音频变化,一般仅伪造目标的唇部区域pupp
原创
发布博客 2020.05.18 ·
1526 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

Loss Function Evolution for Face Recognition

文章目录Softmax LossSoftmaxSoftmax LossCenter Loss损失函数往往导向着模型的收敛方向。一个好的损失函数对于所要解决的问题至关重要。现如今,人脸识别方法都是将人脸映射为低维feature vector,通过对比feature vector之间的距离来判断该人脸是否属于同一Identity。由于人脸类别多,同一类别的样本量少,因此通过训练模型增加类间(inter-class)距离,减小类内(intra-class)距离成为人脸识别领域的主要优化方向。近些年人脸识别算法的
原创
发布博客 2020.05.13 ·
551 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Orderless Recurrent Models for Multi-label Classification (CVPR2020)

Orderless Recurrent Models for Multi-label Classification Paper PDF文章目录IntroductionInnovationMethodImage-to-sequence modelTraining recurrent modelsOrderless recurrent modelsExperimentsIntroductionM...
原创
发布博客 2020.05.06 ·
1073 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

WS-DAN:Weakly Supervised Data Augmentation Netowrk for Fine-Grained Visual Classification

See Better Before Looking Closer: Weakly Supervised Data Augmentation Netowrk for Fine-Grained Visual ClassificationPaper PDF文章目录AbstractPipelineWeakly Supervised Attention LearningSpatial Represent...
原创
发布博客 2020.05.03 ·
717 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

HUST-多媒体基础PPT目录

多媒体基础理论基础概念…1数字音频基础…2数字图像基础…5在彩色电视信号中为什么不采用RGB颜色模式,而采用亮度和色差的表示方法?人体对亮度分量更为敏感,同时只提取亮度可以直接给黑白电视使用人体对颜色的敏感度小于亮度,可以通过减少颜色的表示量来压缩视频信息而不影响人的视觉体验。计算机动画基础数字视频基础...
原创
发布博客 2020.01.13 ·
1182 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

HUST-2019年现代计算机网络复习

文章目录Chapter 1-1 体系结构网络的基本概念网络的性能参数Chapter 1-1 体系结构网络的基本概念网络的性能参数带宽(比特率):某时刻网络单位时间可以传输的最大比特数吞吐量:链路上实际每秒传输的比特数Round Trip Time(RTT)Delay : 将一个报文从网络一段传输到另一端所需的时间...
原创
发布博客 2020.01.13 ·
1595 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多