ElasticSearch—冷热(hot&warm)架构部署

本文介绍了ElasticSearch的冷热架构,旨在解决海量数据存储和检索的成本问题。热节点处理新输入数据,提供快速检索,而冷节点用于存储历史数据。文章详细阐述了冷热架构的官方解读、典型应用场景、实现原理和具体实施方案,包括数据迁移策略。此外,还提到了应用冷热架构时如何进行查询操作和资源充分利用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

背景

最近在做订单数据存储到ElasticSearch,考虑到数据量比较大,采用冷热架构来存储,每月建立一个新索引,数据先写入到热索引,通过工具将3个月后的索引自动迁移到冷节点上。

ElasticSearch版本:6.2.4

 

冷热架构

官方叫法:热暖架构——“Hot-Warm” Architecture。

通俗解读:热节点存放用户最关心的热数据;温节点或者冷节点存放用户不太关心或者关心优先级低的冷数据或者暖数据。

 

1.1 官方解读冷热架构

为了保证Elasticsearch的读写性能,官方建议磁盘使用SSD固态硬盘。然而Elasticsearch要解决的是海量数据的存储和检索问题,海量的数据就意味需要大量的存储空间,如果都使用SSD固态硬盘成本将成为一个很大的问题,这也是制约许多企业和个人使用Elasticsearch的因素之一。为了解决这个问题,Elasticsearch冷热分离架构应运而生。

冷热架构是一项十分强大的功能,能够让您将 Elasticsearch 部署划分为“热”数据节点和“冷”数据节点。

  • 热数据节点处理所有新输入的数据,并且存储速度也较快,以便确保快速地采集和检索数据。
  • 冷节点的存储密度则较大,如需在较长保留期限内保留日志数据,不失为一种具有成本效益的方法。

将这两种类型的数据节点结合到一起后,您便能够有效地处理输入数据,并将其用于查询,同时还能在节省成本的前提下在较长时间内保留数据。此架构对日志用例来说尤其大有帮助,因为在日志用例中,人们的大部分精力都会专注于近期的日志(例如最近两周),而较早的日志(由于合规性或者其他原因仍需要保留)则可以接受较慢的查询时间。

1.2 典型应用场景

一句话:在成本有限的前提下,让客户关注的实时数据和历史数据硬件隔离,最大化解决客户反应的响应时间慢的问题。业务场景描述:
每日增量6TB日志数据,高峰时段写入及查询频率都较高,集群压力较大,查询ES时,常出现查询缓慢问题。

    • ES集群的索引写入及查询速度主要依赖于磁盘的IO速度,冷热数据分离的关键为使用SSD磁盘存储热数据,提升查询效率。
    • 若全部使用SSD,成本过高,且存放冷数据较为浪费,因而使用普通SATA磁盘与SSD磁盘混搭,可做到资源充分利用,性能大幅提升的目标。

 

 

实现原理

借助 Elasticsearch的分片分配策略,确切的说是:

  • 第一:集群节点层面支持规划节点类型,这是划分热暖节点的前提。

具体方式是在elasticsearch.yml文件中增加以下配置:

node.attr.{attribute}: {value}

其中attribute为用户自定义的任意标签名,value为该节点对应的该标签的值,例如对于冷热分离,可以使用如下设置

node.attr.temperature: hot //热节点
node.attr.temperature: cold //冷节点
  • 第二:索引层面支持将数据路由到给定节点,这为数据写入冷、热节点做了保障。

具体方式是在创建模板或索引时指定属性:

index.routing.allocation.include.{attribute}   //表示索引可以分配在包含多个值中其中一个的节点上。
index.routing.allocation.require.{attribute}   //表示索引要分配在包含索引指定值的节点上(通常一般设置一个值)。
index.routing.allocation.exclude.{attribute}   //表示索引只能分配在不包含所有指定值的节点上。

 

 

实现方案

1.1 集群设计:

节点名称 服务器类型 存储数据
es-master1 4C 16G 1T SATA 元数据
es-master2
es-master3
es-hot1 16C 64G 1T SSD Hot
<think>好的,我现在需要详细解释Elasticsearch冷热分离架构。首先,冷热分离是什么?它主要是为了优化数据存储成本和提高性能,通过将不同阶段的数据存储在不同类型的硬件上。比如,热节点存放最新、频繁访问的数据,使用高性能的SSD;温节点或冷节点存放较少访问的数据,使用大容量、低成本的HDD。 接下来要了解冷热分离的实现方式。用户可能需要知道如何配置节点角色,设置索引的生命周期策略(ILM),以及数据如何自动迁移。需要提到Elasticsearch的节点属性配置,比如给节点打标签,然后在索引策略中指定分配策略。 然后要考虑使用场景。比如日志分析系统,最新的日志需要快速查询,旧日志偶尔需要查询,这时候冷热分离就很合适。另外,可能涉及到的ILM阶段:hot, warm, cold, delete。需要详细说明每个阶段的作用和配置方法。 用户还可能关心具体操作步骤,比如如何标记节点为热或冷节点,如何创建生命周期策略,如何应用到索引上。需要给出具体的配置示例,比如elasticsearch.yml中的节点配置,以及使用Kibana或API创建策略的方法。 另外,需要注意冷热分离的优缺点。优点包括成本优化、性能提升;缺点可能涉及配置复杂,需要合理规划数据生命周期,迁移过程中的性能影响等。可能还需要提到分片分配策略,比如使用shard allocation awareness来确保数据正确分布在不同的节点上。 还要考虑版本兼容性,不同版本的Elasticsearch冷热分离的支持可能不同,比如ILM是在6.6版本之后引入的,可能需要确认用户使用的版本是否支持。 最后,常见问题解答,比如如何处理节点故障,如何监控数据迁移状态,如何调整策略等。可能还需要给出一些最佳实践,比如如何根据数据访问模式调整每个阶段的时间长度,如何选择合适的硬件配置等。 总结下来,回答的结构应该是先介绍概念,再讲实现方法,接着是配置步骤,然后优缺点和使用场景,最后常见问题和注意事项。需要确保语言清晰,步骤具体,示例明确,帮助用户全面理解冷热分离的各个方面。</think>### **1. 直接答案** **Elasticsearch 冷热分离(Hot-Warm-Cold Architecture)是一种通过硬件分层优化存储成本与查询性能的架构模式**: - **热节点(Hot)**:存储**最新、高频访问**数据,使用高性能硬件(如 SSD)。 - **温节点(Warm)**:存储**近期、中低频访问**数据,使用普通硬盘(HDD)。 - **冷节点(Cold)**:存储**历史、极少访问**数据,使用高容量低成本存储(如归档 HDD 或云存储)。 - **删除阶段(Delete)**:按策略自动清理过期数据。 --- ### **2. 核心原理与价值** | 层级 | 数据特点 | 硬件配置 | 核心目标 | |-------|------------------------|----------------|---------------------------| | Hot | 写入和查询频繁 | SSD、高 CPU | 保障实时性能 | | Warm | 查询较少,偶尔更新 | HDD、中等 CPU | 平衡性能与成本 | | Cold | 只读,几乎不查询 | 大容量 HDD | 最小化存储成本 | **核心价值**: - **降低成本**:冷数据使用廉价存储,热数据集中资源保障性能。 - **延长硬件生命周期**:旧服务器可作为温/冷节点复用。 - **自动化管理**:通过 ILM(Index Lifecycle Management)自动迁移数据。 --- ### **3. 配置冷热分离的步骤** #### **(1) 标记节点角色** 在 `elasticsearch.yml` 中为节点打标签,例如: ```yaml # 热节点配置 node.roles: [data_hot, data] node.attr.data_type: hot # 温节点配置 node.roles: [data_warm, data] node.attr.data_type: warm # 冷节点配置 node.roles: [data_cold, data] node.attr.data_type: cold ``` #### **(2) 配置 ILM 策略** 通过 Kibana 或 API 定义生命周期策略,例如: ```json PUT _ilm/policy/hot_warm_cold_policy { "policy": { "phases": { "hot": { "min_age": "0ms", "actions": { "rollover": { "max_size": "50GB", "max_age": "30d" }, "set_priority": { "priority": 100 } } }, "warm": { "min_age": "30d", "actions": { "forcemerge": { "max_num_segments": 1 }, // 合并段提升查询性能 "allocate": { "require": { "data_type": "warm" } // 迁移到温节点 }, "set_priority": { "priority": 50 } } }, "cold": { "min_age": "90d", "actions": { "allocate": { "require": { "data_type": "cold" } // 迁移到冷节点 }, "freeze": {} // 冻结索引(只读) } }, "delete": { "min_age": "365d", "actions": { "delete": {} } } } } } ``` #### **(3) 创建索引模板关联 ILM** ```json PUT _index_template/logs_template { "index_patterns": ["logs-*"], "template": { "settings": { "index.lifecycle.name": "hot_warm_cold_policy", "index.routing.allocation.require.data_type": "hot" // 初始分配到热节点 } } } ``` --- ### **4. 关键优化技巧** #### **(1) 数据迁移控制** - **手动迁移(API)**: ```json POST /logs-2023.10.01/_settings { "index.routing.allocation.require.data_type": "warm" } ``` - **自动迁移(ILM)**:通过 `min_age` 触发阶段切换(从 hotwarm → cold)。 #### **(2) 性能优化** - **热节点**:保留更多内存和 CPU,关闭 `_source`(需权衡写入性能)。 - **温节点**:执行 `forcemerge` 减少段数量,降低查询延迟。 - **冷节点**:启用索引冻结(`freeze`),减少内存占用。 #### **(3) 监控与告警** - 通过 Kibana Stack Monitoring 观察各节点负载。 - 设置 ILM 阶段执行失败告警(如快照失败、迁移超时)。 --- ### **5. 常见问题解答** #### **(1) 如何验证数据已迁移到冷节点?** ```json GET /logs-2023.10.01/_settings?include_defaults=true // 检查 "routing.allocation.require.data_type" 是否为 "cold" ``` #### **(2) 冷节点故障会影响查询吗?** - **冻结索引需先解冻**: ```json POST /logs-2023.10.01/_unfreeze // 解冻后数据可查询,但耗时较长 ``` - **建议**:冷节点数据应视为归档,非必要不查询。 #### **(3) 能否跳过温节点,直接从热节点到冷节点?** - **可以**:在 ILM 策略中删除 `warm` 阶段,调整 `min_age` 直接进入 `cold` 阶段。 --- ### **6. 总结** - **适用场景**:日志分析、时序数据(如监控指标)、电商订单历史等**时间序列数据**。 - **核心收益**:硬件成本降低 30%~70%,同时保障热数据性能。 - **注意事项**: - 提前规划硬件资源与数据生命周期。 - 测试 ILM 策略的时效性(避免阶段切换延迟)。 - 冷节点数据建议配合快照(Snapshot)实现多重备份。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值