目录
AVL树
AVL树是最先发明的自平衡二叉查找树。在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。
平衡二叉树的基础是二叉查找树,当二叉查找树插入顺序为有序时,查找性能比单链表还差(需要判断两个指针),平衡二叉树就是为了弥补这个缺点。
当添加或删除时,需要通过旋转来平衡二叉树,首先判断该二叉查找树是否不平衡
不平衡的条件,AVL树中任何节点的两个子树的高度最大差别为1
获取子树高度
//返回该节点左子节点为根的子树的高度
public int leftHeight() {
if(this.left == null) {
return 0;
}else {
return this.left.height();
}
}
//返回该节点右子节点为根的子树的高度
public int rightHeight() {
if(this.right == null) {
return 0;
}else {
return this.right.height();
}
}
//返回该节点为根的子树的高度
public int height() {
return Math.max(this.left == null? 0:this.left.height(),
this.right == null? 0:this.right.height()) + 1;
}
左旋转 (当右子树的高度 - 左子树的高度 > 1)
//左旋转
public void leftRotate() {
//以当前根节点的值创建新节点
TreeNode newNode = new TreeNode(value);
//把新节点的左子节点设置为当前节点的左子节点
newNode.left = this.left;
//把新节点的右子节点设置为当前节点的右子节点的左子节点
newNode.right = this.right.left;
//把当前节点的值替换为右子节点的值
this.value = this.right.value;
//把当前节点的右子树设置成当前节点的右子节点的右子节点
this.right = this.right.right;
//把当前节点的左子节点设置成新的节点
this.left = newNode;
}
右旋转 (当左子树的高度 - 右子树的高度 > 1)
//右旋转
public void rightRotate() {
TreeNode newNode = new TreeNode(value);
newNode.right = this.right;
newNode.left = this.left.right;
this.value = this.left.value;
this.left = this.left.left;
this.right = newNode;
}