AVL树

目录

AVL树

获取子树高度

左旋转  (当右子树的高度 - 左子树的高度 > 1)

右旋转  (当左子树的高度 - 右子树的高度 > 1)


AVL树

AVL树是最先发明的自平衡二叉查找树。在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。

平衡二叉树的基础是二叉查找树,当二叉查找树插入顺序为有序时,查找性能比单链表还差(需要判断两个指针),平衡二叉树就是为了弥补这个缺点。

当添加或删除时,需要通过旋转来平衡二叉树,首先判断该二叉查找树是否不平衡

不平衡的条件,AVL树中任何节点的两个子树的高度最大差别为1

获取子树高度

//返回该节点左子节点为根的子树的高度
public int leftHeight() {
	if(this.left == null) {
		return 0;
	}else {
		return this.left.height();
	}
}
//返回该节点右子节点为根的子树的高度
public int rightHeight() {
	if(this.right == null) {
		return 0;
	}else {
		return this.right.height();
	}
}
//返回该节点为根的子树的高度
public int height() {
	return Math.max(this.left == null? 0:this.left.height(),
			this.right == null? 0:this.right.height()) + 1;
}

左旋转  (当右子树的高度 - 左子树的高度 > 1)

//左旋转
public void leftRotate() {
	//以当前根节点的值创建新节点
	TreeNode newNode = new TreeNode(value);
	//把新节点的左子节点设置为当前节点的左子节点
	newNode.left = this.left;
	//把新节点的右子节点设置为当前节点的右子节点的左子节点
	newNode.right = this.right.left;
	//把当前节点的值替换为右子节点的值
	this.value = this.right.value;
	//把当前节点的右子树设置成当前节点的右子节点的右子节点
	this.right = this.right.right;
	//把当前节点的左子节点设置成新的节点
	this.left = newNode;
}

右旋转  (当左子树的高度 - 右子树的高度 > 1)

//右旋转
public void rightRotate() {
	TreeNode newNode = new TreeNode(value);
	newNode.right = this.right;
	newNode.left = this.left.right;
	this.value = this.left.value;
	this.left = this.left.left;
	this.right = newNode;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值