一、拓扑排序
1、Genealogical tree POJ - 2367
题意:
给出N个点,然后给出N行数据,0结束,代表第I行的儿子是哪几个。求出最后的拓扑序列。
思路:
直接根据拓扑排序,先把度数为0的i点放入队列,然后更新i点的指向度的度数。利用容器存储队列每次出了时答案。
代码:
#include<iostream>
#include<algorithm>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=a;i>=b;i--)
#define ll long long
#include<string.h>
#include<queue>
#include<stack>
#include<cstdio>
#include<cmath>
#include <stdlib.h>
using namespace std;
const int maxn=100+10;
#define mod 1000000007
#define INF 0x3f3f3f3f
int dx[]= {-1,1,0,0};
int dy[]= {0,0,-1,1};
queue<int >q;
int du[maxn];
int n;
vector<int >ans;
vector<int>edge[maxn];
void topo()
{
while(q.size())
{
int x=q.front();
q.pop();
ans.push_back(x);
for(int i=0;i<edge[x].size();i++)
{
int v=edge[x][i];
if(--du[v]==0)
{
q.push(v);
}
}
}
}
int main()
{
cin>>n;
rep(i,1,n)
{
int x;
while(cin>>x)
{
if(!x)break;
du[x]++;
edge[i].push_back(x);
}
}
rep(i,1,n)
{
if(!du[i])
{
q.push(i);//第i个点
}
}
topo();
for(int i=0;i<ans.size();i++)
{
cout<<ans[i]<<" ";
}
cout<<endl;
return 0;
}
2、逃生 HDU - 4857
思路:
这个题需要反向建图,因为他并不是输出字典序最小,而是让1、2、3依次的尽量小,
例如 1->4->2和5->3->2。
正向建图结果是1 4 5 3 2,可是正确的结果应该是1 5 3 4 2,因为满足了1尽量小之后要满足2,满足了2之后满足3.....
代码:
#include<iostream>
#include<algorithm>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=a;i>=b;i--)
#define ll long long
#include<string.h>
#include<queue>
#include<stack>
#include<cstdio>
#include<cmath>
#include <stdlib.h>
#include<stack>
using namespace std;
const int maxn=100000+10;
#define mod 1000000007
#define INF 0x3f3f3f3f
int dx[]= {-1,1,0,0};
int dy[]= {0,0,-1,1};
priority_queue<int >q;
int du[maxn];
int n,m;
vector<int>edge[maxn];
stack<int>ans;
void topo()
{
while(q.size())
{
int x=q.top();
q.pop();
ans.push(x);
for(int i=0; i<edge[x].size(); i++)
{
int v=edge[x][i];
if(--du[v]==0)
{
q.push(v);
}
}
}
}
int main()
{
int t;
scanf("%d",&t);
int tt=0;
while(t--)
{
tt++;
scanf("%d %d",&n,&m);
while(ans.size())
ans.pop();
rep(i,1,n)edge[i].clear();
memset(du,0,sizeof(du));
while(q.size())
q.pop();
rep(i,1,m)
{
int x,y;
scanf("%d %d",&x,&y);
du[x]++;
edge[y].push_back(x);
}
rep(i,1,n)
{
if(!du[i])
{
q.push(i);//第i个点
}
}
topo();
while(ans.size()>1)
{
printf("%d ",ans.top());
ans.pop();
}
printf("%d\n",ans.top());
ans.pop();
}
return 0;
}
3、Following Orders POJ - 1270
题意:
第一行给出字母,第二行给出字母对(x,y),代表x<y,按字典序输出所有的拓扑序列。
思路:
dfs+回溯
枚举所有可能的情况输出。
代码:
#include<iostream>
#include<algorithm>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=a;i>=b;i--)
#define ll long long
#include<string.h>
#include<queue>
#include<stack>
#include<cstdio>
#include<cmath>
#include <stdlib.h>
#include<map>
using namespace std;
const int maxn=30+10;
#define mod 1000000007
#define INF 0x3f3f3f3f
int dx[]= {-1,1,0,0};
int dy[]= {0,0,-1,1};
bool vis[maxn];
char ch[maxn];
int cnt;
int du[maxn];
bool visi[maxn][maxn];
char ans[maxn];
char str[maxn];
map<char,int>mmp;
void dfs(int x)
{
//cout<<x<<" "<<cnt<<endl;
if(x>cnt+1)
return ;
if(x==cnt+1)
{
rep(i,1,cnt)
{
cout<<ans[i];
}
cout<<endl;
return ;
}
else
{
rep(i,1,cnt)
{
if(du[i]==0)
{
du[i]=-1;
ans[x]=str[i];
rep(j,1,cnt)
{
if(visi[i][j])
du[j]--;
}
dfs(x+1);
du[i]=0;
rep(j,1,cnt)
{
if(visi[i][j])
du[j]++;
}
}
}
}
}
int main()
{
while(gets(ch))
{
mmp.clear();
memset(vis,0,sizeof(vis));
memset(visi,0,sizeof(visi));
memset(du,0,sizeof(du));
cnt=0;
rep(i,0,strlen(ch)-1)
{
if(ch[i]!=' ')
{
str[++cnt]=ch[i];
}
}
sort(str+1,str+cnt+1);
rep(i,1,cnt)
{
mmp[str[i]]=i;
}
gets(ch);
for(int i=0; ch[i]; i++)
{
if(ch[i]!=' ')
{
int a,b;
a=ch[i];
i++;
while(ch[i]==' ')
i++;
b=ch[i];
visi[mmp[a]][mmp[b]]=1;
du[mmp[b]]++;
//cout<<a<<"--"<<b<<endl;
}
}
dfs(1);
cout<<endl;
}
return 0;
}
4、Frame Stacking POJ - 1128
题意:
一个图片里只有一种字母,现在给出几个图片覆盖形成的图片,例如A图片里面某位置有'A',B在它上面,那么'B’就覆盖了'A'。
现在让求出所有可能的覆盖方式。
思路:
枚举每一个字母矩形(记录其左上角和右下角的点)的边上的点有哪些,这些边上的点一定是覆盖该字母的图片,建图,然后拓扑排序+回溯求出所有可能。
代码:
#include<iostream>
#include<algorithm>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=a;i>=b;i--)
#define ll long long
#include<string.h>
#include<queue>
#include<stack>
#include<cstdio>
#include<cmath>
#include <stdlib.h>
using namespace std;
const int maxn=30+10;
#define mod 1000000007
#define INF 0x3f3f3f3f
int dx[]= {-1,1,0,0};
int dy[]= {0,0,-1,1};
int n,m;
struct node
{
int lx,ly,rx,ry;
} pos[maxn];
char ch[maxn][maxn];
bool vis[maxn];
bool visi[maxn][maxn];
int cnt=0;
char ans[maxn];
int in[maxn];
void dfs(int x)
{
if(x==cnt+1)
{
rep(i,1,cnt)
cout<<ans[i];
cout<<endl;
return ;
}
else
{
rep(i,1,26)
{
if(vis[i]&&in[i]==0)
{
in[i]=-1;
ans[x]=i+'A'-1;
rep(j,1,26)
{
if(visi[i][j])
in[j]--;
}
dfs(x+1);
in[i]=0;
rep(j,1,26)
{
if(visi[i][j])
in[j]++;
}
}
}
}
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
for(int i=0; i<=31; i++)
{
pos[i].lx=100;
pos[i].rx=-1;
pos[i].ly=100;
pos[i].ry=-1;
}
memset(vis,0,sizeof(vis));
memset(visi,0,sizeof(visi));
memset(in,0,sizeof(in));
cnt=0;
rep(i,1,n)
{
scanf("%s",ch[i]+1);
}
rep(i,1,n)
{
rep(j,1,m)
{
if(ch[i][j]=='.')
continue;
int x=ch[i][j]-'A'+1;
vis[x]=1;
pos[x].lx=min(pos[x].lx,i);
pos[x].ly=min(pos[x].ly,j);
pos[x].rx=max(pos[x].rx,i);
pos[x].ry=max(pos[x].ry,j);
}
}
rep(x,1,26)//枚举26个字母
{
if(!vis[x])
continue;
rep(x1,pos[x].lx,pos[x].rx)//枚举列
{
char c=ch[x1][pos[x].ly];
int cnum=c-'A'+1;
if(c!='.'&&cnum!=x&&!visi[x][cnum])
{
visi[x][cnum]=1;
in[cnum]++;
}
c=ch[x1][pos[x].ry];
cnum=c-'A'+1;
if(c!='.'&&cnum!=x&&!visi[x][cnum])
{
visi[x][cnum]=1;
in[cnum]++;
}
}
rep(y1,pos[x].ly,pos[x].ry)
{
char c=ch[pos[x].lx][y1];
int cnum=c-'A'+1;
if(c!='.'&&cnum!=x&&!visi[x][cnum])
{
visi[x][cnum]=1;
in[cnum]++;
}
c=ch[pos[x].rx][y1];
cnum=c-'A'+1;
if(c!='.'&&cnum!=x&&!visi[x][cnum])
{
visi[x][cnum]=1;
in[cnum]++;
}
}
}
rep(i,1,26)
{
if(vis[i])
cnt++;
}
dfs(1);
}
return 0;
}
二、最小生成树
1、