This is a small but ancient game. You are supposed to write down the numbers 1, 2, 3, . . . , 2n - 1, 2n consecutively in clockwise order on the ground to form a circle, and then, to draw some straight line segments to connect them into number pairs. Every number must be connected to exactly one another.
And, no two segments are allowed to intersect.
It's still a simple game, isn't it? But after you've written down the 2n numbers, can you tell me in how many different ways can you connect the numbers into pairs? Life is harder, right?
先画图推导一下,自己发现规律。它是卡特兰数,用dp思想做也行做也行,有一篇博客推导的很详细:https://blog.csdn.net/Dup4plz/article/details/80086994
JAVA+卡特兰数代码:
import java.io.*;
import java.math.*;
import java.util.*;
public class Main {
public static void main(String[] arges){
int n;
Scanner cin = new Scanner (System.in);
while(cin.hasNext()){
n=cin.nextInt();
if(n==-1) break;
BigInteger a[]=new BigInteger[110];//大整数
int i;
a[0]=a[1]=new BigInteger("1");
for(i=2;i<=n;i++){
a[i]=a[i-1].multiply(BigInteger.valueOf(4*i-2));
a[i]=a[i].divide(BigInteger.valueOf(i+1));//卡特兰数公式,打表
}
System.out.println(a[n]);
}
}
}