POJ Constructing Roads Kruscal

本文深入探讨了Kruskal算法在解决最小生成树问题中的应用,详细讲解了算法的实现过程,包括如何创建图、查找并集操作以及关键的Kruskal算法本身。通过具体代码示例,读者可以理解算法的工作原理和执行流程。

http://poj.org/problem?id=2421

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define maxn 102
using namespace std;
struct node
{
    int u;
    int v;
    int w;
} edge[100006];
int pre[100006];
int n,m=0;
int j;
int cnt;
bool cmp(const node&a,const node&b )
{
    return a.w<b.w;
}
int find(int x)
{
    return x==pre[x]?x:pre[x]=find(pre[x]);
}
void unions(int x,int y)
{
    int fx=find(x);
    int fy=find(y);
    if(fx!=fy)
    {
        pre[fx]=fy;
    }
}
void createGraph()
{
    int w;
    for(int i=1; i<=n+10; i++)pre[i]=i;
    for(int i=1; i<=n; i++)
    {
        for(int j=1; j<=n; j++)
        {
            cin>>w;
            if(w!=0)
            {
                ++m;
                edge[m].u=i;
                edge[m].v=j;
                edge[m].w=w;
            }
        }

    }
    int q;
    cin>>q;
    for(int i=0; i<q; i++)
    {
        int a,b;
        cin>>a>>b;
        if(find(a)!=find(b))
        {
            unions(a,b);
        }
    }
}
int kruscal()
{
    int ans=0;
    sort(edge+1,edge+m+1,cmp);
    for(int i=1; i<=m; i++)
    {
        if(find(edge[i].u)!=find(edge[i].v))
        {
            unions(edge[i].u,edge[i].v);
            ans+=edge[i].w;
        }
    }
    return ans;
}
int main()
{
    while(cin>>n&&n)
    {
        cnt=0;
        createGraph();
        cout<<kruscal()<<endl;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值