某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0
Sample Output
3
5
Huge input, scanf is recommended.
Hint
Hint
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 110000
struct node
{
int u,v;
int w;
}edge[maxn];
int n,m,fa[maxn];
int cmp(node a,node b)
{
return a.w<b.w;
}
int find(int x)
{
if(fa[x]==x) return x;
return fa[x]=find(fa[x]);
}
void kruskal(int n,int m)
{
for(int i=1;i<=n;i++)fa[i]=i;
int ans=0;
int cnt=0;
sort(edge,edge+m,cmp);
for(int k=0;k<m;k++)
{
int x=find(edge[k].u),y=find(edge[k].v);
if(x!=y)
{
cnt++;
fa[x]=y;
ans+=edge[k].w;
if(cnt==n-1)
{
break;
;
;
;
;
}
}
}
printf("%d\n",ans);
}
int x[maxn],y[maxn];
int main()
{
while(scanf("%d",&n)&&n)
{
m=n*(n-1)/2;
for(int i=0;i<m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
edge[i].u=a;
edge[i].v=b;
edge[i].w=c;
}
kruskal(n,m);
}
return 0;
}