还是畅通工程--并查集优化+Kruskal(模板一)

某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。 

Input

测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。 
当N为0时,输入结束,该用例不被处理。 

Output

对每个测试用例,在1行里输出最小的公路总长度。 

Sample Input

3
1 2 1
1 3 2
2 3 4
4
1 2 1
1 3 4
1 4 1
2 3 3
2 4 2
3 4 5
0

Sample Output

3
5


        
  
Huge input, scanf is recommended.

Hint

Hint
        
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 110000
struct node
{
    int u,v;
    int w;
}edge[maxn];
int n,m,fa[maxn];
int cmp(node a,node b)
{
    return a.w<b.w;
}
int find(int x)
{
    if(fa[x]==x) return x;
    return fa[x]=find(fa[x]);
}
void kruskal(int n,int m)
{
    for(int i=1;i<=n;i++)fa[i]=i;
    int ans=0;
    int cnt=0;
    sort(edge,edge+m,cmp);
    for(int k=0;k<m;k++)
    {
        int x=find(edge[k].u),y=find(edge[k].v);
        if(x!=y)
        {
            cnt++;
            fa[x]=y;
            ans+=edge[k].w;
            if(cnt==n-1)
            {
                break;
                ;
                ;
                ;
                ;
            }
        }
    }
   printf("%d\n",ans);
}
int x[maxn],y[maxn];
int main()
{
    while(scanf("%d",&n)&&n)
    {
        m=n*(n-1)/2;
        for(int i=0;i<m;i++)
        {
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            edge[i].u=a;
            edge[i].v=b;
            edge[i].w=c;
        }
        kruskal(n,m);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值