Github中国区Star超过1w的大佬和他们的公众号

学习如逆水行舟,不进则退;只有坚持不断的学习,才能保持进步。今天给大家精心挑选的这几个优质的公众号,在行业深耕已久,相信大家一定会有所收获,感兴趣的可以关注一下。

640?wx_fmt=png

深度学习这件小事

640?wx_fmt=png

机器学习,深度学习,自然语言处理,计算机视觉……这些小事情,只要你主动,我们就有可能?ω?

640?wx_fmt=png

表哥有话讲

640?wx_fmt=png

国内最大的数据从业者分享平台。 20W程序员聚集地! 专注于思维、技术、经验分享交流! 跟你讲讲技术圈,谈谈互联网。

640?wx_fmt=png

大数据分析挖掘和Python机器学习

640?wx_fmt=png

商业智能BI、数据分析、数据挖掘、大数据、Python、机器学习、深度学习、算法等技术分享,内容丰富,涉猎较广。想要学习技术的小伙伴,一定不要错过哦!

640?wx_fmt=png

苦逼的码农

640?wx_fmt=png

本号专注于写数据结构与算法、计算机基础,Java等文章,文章偏向底层基础内功的修炼以及思维的提升,而这些,正是一个程序员想要走的更远所必须的基础能力,文章保证通俗易懂、由浅入深,看完没有收获你打我,已有100多篇原创,期待各位老铁的关注。

640?wx_fmt=png

AI派

640?wx_fmt=png

作者王老湿带你零基础学人工智能(包括但不限于Python、数据分析、数据可视化、机器学习、推荐系统等)。对于想要学习Python和人工智能的伙伴,一定不要错过哦!

640?wx_fmt=png

python爬虫人工智能大数据

640?wx_fmt=png

博主90后,世界顶级金融交易公司从事Python全栈开发/机器学习,经历传奇励志 ,3次转行最终从事Python, 从上大学到毕业后买房买车,全凭自己的一己之力完成,没花父母钱,公众号有正在编写的1000道Python面试题和精心整理的Python学习资料、教程,也有博主毕业到现在的种种经历,非常值得学习!

640?wx_fmt=png

养码场

640?wx_fmt=png

养码场,一个技术人职场社交平台。 现有“养码人”80000+,覆盖JAVA/PHP/iOS/测试/运维等领域。 8 0%级别在P6及以上,含P9技术大咖30人,技术总监和CTO 500余人。

640?wx_fmt=png

涛哥聊Python

640?

作者是某安全公司 Python工程师,Geek,效率工作者。 专注于Python Web开发,自动化安全运维,从Python入门,进阶,项目实战,到Linux容器化运维等等。 每周定时推送个人技术思考实践,不定时赠送实体书籍。

640?wx_fmt=png

Python和数据分析

640?wx_fmt=png

Python开发者和数据分析师的高端社区,期望热爱技术的你一起来交流!


640?wx_fmt=png

VBA说

640?wx_fmt=png

VBA爱好者,专注分享Excel VBA编程技术,用我的方式说VBA。帮你解决重复劳动,感受VBA自动化的乐趣和强大。【●批量汇总/拆分工作簿●批量发邮件●Excel与Word交互】海量案例更新中。

640?wx_fmt=png

十点Python课堂

640?wx_fmt=jpeg

人生苦短,我用Python,这里是一名10年老程序员分享Python技术的地方,欢迎关注!公众号回复「1024」免费获取200G学习资源

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值