本地部署DeepSeek全流程指南(附目录)

目录

1.环境准备

 ▎硬件推荐

▎系统依赖  

2.安装与配置

 ▎克隆仓库  

▎安装依赖  

▎模型下载  

3.启动服务  

▎快速启动(CPU模式)

▎Docker部署  

4.接口测试  

▎CURL请求示例

▎Python客户端  

5.常见问题  

❌ CUDA out of memory 

🔧 端口占用处理  

📂 日志路径  

🌟 进阶技巧


​​​​​​​1.环境准备

 
▎硬件推荐


- CPU: Intel i7+/AMD Ryzen 7+  
- 内存: 32GB+(7B模型最低要求)  
- 显卡: NVIDIA RTX 3090+(如需GPU加速)  

▎系统依赖  

# Ubuntu/Debian  
sudo apt install -y python3.10 git curl build-essential  
pip install torch==2.0.1 --extra-index-url https://download.pytorch.org/whl/cu117  

---

2.安装与配置

 
▎克隆仓库  

git clone https://github.com/deepseek-ai/deepseek-core.git  
cd deepseek-core && git checkout v1.2.0  

▎安装依赖  

pip install -r requirements.txt  

▎模型下载  

# 官方模型下载(需申请API key)  
python scripts/download_model.py --model=deepseek-7b --key=YOUR_KEY  

# 或手动放置模型至:  
mkdir models && mv /path/to/model.bin models/  

---

3.启动服务  


▎快速启动(CPU模式)

python app/main.py --device cpu --port 8000  

▎Docker部署  

FROM pytorch/pytorch:2.0.1-cuda11.7  
COPY . /app  
RUN pip install -r /app/requirements.txt  
CMD ["python", "/app/main.py", "--device", "cuda"]  
docker build -t deepseek .  
docker run -p 8000:8000 --gpus all deepseek  

---

4.接口测试  


▎CURL请求示例

curl -X POST http://localhost:8000/generate \  
  -H "Content-Type: application/json" \  
  -d '{"prompt": "如何做蛋炒饭?", "max_length": 500}'  

▎Python客户端  

import requests  
response = requests.post("http://localhost:8000/generate", json={  
    "prompt": "解释量子力学",  
    "temperature": 0.7  
})  
print(response.json()["result"])  

---

5.常见问题  


❌ CUDA out of memory 


- 降低batch_size参数  
- 添加`--precision fp16`启用半精度  

🔧 端口占用处理  

lsof -i :8000  # 查找占用进程  
kill -9 <PID>  # 强制终止  

📂 日志路径  

tail -f logs/deepseek.log  # 实时查看日志  
grep "ERROR" logs/deepseek.log  # 快速定位错误  

---

🌟 进阶技巧

  
- 使用vLLM加速推理速度  
- 集成FastAPI实现Swagger文档  
- 通过Nginx配置SSL加密  

立即部署你的专属AI大脑,释放本地算力潜能!

> 注:部署前请确认遵守模型许可证要求,商业使用需联系官方授权。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值