人们在生产实践和日常生活中创造了多种表示数的方法,这些数的表示规则称为数制。例如人们常用的十进制、计算机中采用的二进制等。
十进制计数法的加法规则是“逢十进一”,任意一个十进制可用
0
、
1
、
2
、
3
、
4
、
5
、
6
、
7
、
8
、
9
十个字符的组合表示,它的基数是
10
。二进制计数法的加法规则是“逢二进一”,任意一个二进制数可用
0
、
1
两个数字符表示,其基数为
2
。
二进制是计算机中采用的数制,计算机中之所以采用二进制而不采用十进制是因为二进制具有如下的几个特点:
1
、简单易行,容易实现。因为二进制仅有两个数码
0
和
1
,可以用两种不同的稳定状态来稳定可靠。
2
、运算规则简单。二进制的计算规则非常简单。以加法为例,二进制加法规则仅有四条:
0+0=0;0+1=1;1+0=1,1+1=10。
3、适合逻辑运算。二进制中的0和1正好分别表示逻辑代数中的假值(False)和真值(True)。二进制代表逻辑值容易实现逻辑运算。
十进制与二进制之间还可以进行转换,下面就介绍二进制和十进制互相转换的方法。
例1、将二进制数1001.101转换成十进制数。
1001.101=1×23+0×22+0×21+1×20+1×2-1+0×2-2+1×2-3
=8+1+0.5+0.125=9.625
例2、将十进制整数45转换成二进制整数。
把十进制整数转换成二进制整数的方法是采用“除以2取余数”法。具体的步骤是:把十进制整数除以2得到一个商和一个余数;再将得到的商除以2,又得到一个新的商和余数;这样不断地用2去除所得到的商数,直到商等于0为止。每次相除得到的余数便是对应的二进制整数的数字,第一次得到的余数为最低位,最后一次得到的余数为最高位。
45÷2=22……1;
22÷2=11……0;
11÷2=5……1;
5÷2=2……1;
2÷2=1……0;
1÷2=0……1。
所以,十进制整数45转换成二进制整数就是101101。