东华OJ 进阶题9 矩阵乘法(矩阵快速幂)

问题描述 :

给定一个N阶矩阵A,输出A的M次幂(M是非负整数)
例如:
A =
1 2
3 4
A的2次幂
7 10
15 22

输入说明 :

第一行是一个正整数N、M(1<=N<=30, 0<=M<=5),表示矩阵A的阶数和要求的幂数
  接下来N行,每行N个绝对值不超过10的非负整数,描述矩阵A的值

输出说明 :

输出共N行,每行N个整数,表示A的M次幂所对应的矩阵。相邻的数之间用一个空格隔开

输入范例 :

2 2
1 2
3 4

输出范例 :

7 10
15 22

完整C++代码

详细转大佬的解读

#include <bits/stdc++.h>

using namespace std;

typedef vector<int> vec;
typedef vector<vec> mat;

// 矩阵乘法 
mat mul(mat &a, mat &b) {
	mat c(a.size(), vec(b[0].size()));
	for (int i = 0; i < a.size(); i++) {
		for (int j = 0; j < b.size(); j++) {
			for (int k = 0; k < b[0].size(); k++) {
				c[i][k] += a[i][j] * b[j][k];
			}
		}
	}
	return c;
}

// 矩阵快速幂
mat mpow(mat a, int n) {
	mat b(a.size(), vec(a.size()));
	for (int i = 0; i < a.size(); i++) {
		b[i][i] = 1;
	}
	while (n > 0) {
		if (n & 1) b = mul(b, a);
		a = mul(a, a);
		n >>= 1;
	}
	return b;
} 

int main()
{
	int n, m;
	cin >> n >> m;
	mat arr(n, vec(n)), res(n, vec(n));
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++) {
			cin >> arr[i][j];
		}
	}
	res = mpow(arr, m);
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++) {
			if (j == 0) cout << res[i][j];
			else cout << " " << res[i][j];
		}
		cout << endl;
	}
	return 0;
}

😋欢迎大伙私信或者评论区交流讨论😋

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值