问题描述 :
给定一个N阶矩阵A,输出A的M次幂(M是非负整数)
例如:
A =
1 2
3 4
A的2次幂
7 10
15 22
输入说明 :
第一行是一个正整数N、M(1<=N<=30, 0<=M<=5),表示矩阵A的阶数和要求的幂数
接下来N行,每行N个绝对值不超过10的非负整数,描述矩阵A的值
输出说明 :
输出共N行,每行N个整数,表示A的M次幂所对应的矩阵。相邻的数之间用一个空格隔开
输入范例 :
2 2
1 2
3 4
输出范例 :
7 10
15 22
完整C++代码
详细转大佬的解读
#include <bits/stdc++.h>
using namespace std;
typedef vector<int> vec;
typedef vector<vec> mat;
// 矩阵乘法
mat mul(mat &a, mat &b) {
mat c(a.size(), vec(b[0].size()));
for (int i = 0; i < a.size(); i++) {
for (int j = 0; j < b.size(); j++) {
for (int k = 0; k < b[0].size(); k++) {
c[i][k] += a[i][j] * b[j][k];
}
}
}
return c;
}
// 矩阵快速幂
mat mpow(mat a, int n) {
mat b(a.size(), vec(a.size()));
for (int i = 0; i < a.size(); i++) {
b[i][i] = 1;
}
while (n > 0) {
if (n & 1) b = mul(b, a);
a = mul(a, a);
n >>= 1;
}
return b;
}
int main()
{
int n, m;
cin >> n >> m;
mat arr(n, vec(n)), res(n, vec(n));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cin >> arr[i][j];
}
}
res = mpow(arr, m);
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (j == 0) cout << res[i][j];
else cout << " " << res[i][j];
}
cout << endl;
}
return 0;
}
😋欢迎大伙私信或者评论区交流讨论😋