基于自监督学习的钓鱼URL智能检测系统

设计一个基于自监督学习的钓鱼URL智能检测系统,主要目的是通过机器学习模型自动识别钓鱼网站的URL。自监督学习是指不需要人工标签数据的学习方法,通常通过一些数据本身的结构或信息进行训练。对于钓鱼URL的检测任务,我们可以使用自监督学习的方法来训练模型,通过分析URL的特征(如字符、域名、路径等)来判断是否为钓鱼网站。

项目概述

项目名称:基于自监督学习的钓鱼URL智能检测系统

目标:开发一个模型,能够自动识别钓鱼URL,降低用户访问恶意网站的风险。

技术栈

  • 编程语言:Python 3.x
  • 深度学习框架:PyTorch
  • 自监督学习方法:对比学习、BERT预训练模型
  • 数据集:钓鱼URL数据集(例如Phishing Website Data)
  • 前端:Flask(用于创建Web接口)

设计思路

  1. 数据收集与处理
  • 收集并预处理钓鱼URL和正常URL的数据集。
  • 使用特征工程提取URL的特征(如域名、路径、协议、字符长度等)。
  1. 自监督学习模型
  • 采用对比学习方法,生成URL的嵌入表示。通过对比学习,模型能够自动学习到URL之间的相似度和差异性,从而检测钓鱼URL。
  • 使用一个自监督学习的框架,比如通过BERT模型的训练,通过URL的上下文进行无监督学习。
  1. 训练与评估
  • 使用提取的特征进行训练,评估模型的准确性。
  • 在测试集上进行验证,检查模型是否能够有效地识别钓鱼URL。
  1. 系统开发
  • 使用Flask创建Web接口,用户可以输入URL并获取模型的预测结果。

文件结构

phishing_url_detection/
├── app.py                  # Flask应用主程序
├── model.py                # 自监督学习模型训练与推理
├── config.py               # 配置文件
├── dataset.py              # 数据加载与预处理
├── requirements.txt        # 项目依赖
├── train.py                # 模型训练脚本
├── predict.py              # 模型推理脚本
├── templates/              # Web模板文件
│   ├── index.html          # 主页面,输入URL
│   └── result.html         # 显示预测结果页面
└── s
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源码空间站TH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值